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Abstract

Equilibrium sampling of biomolecules remains an unmet challenge after
more than 30 years of atomistic simulation. Efforts to enhance sampling
capability, which are reviewed here, range from the development of new
algorithms to parallelization to novel uses of hardware. Special focus is
placed on classifying algorithms—most of which are underpinned by a
few key ideas—in order to understand their fundamental strengths and
limitations. Although algorithms have proliferated, progress resulting
from novel hardware use appears to be more clear-cut than from algo-
rithms alone, due partly to the lack of widely used sampling measures.
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INTRODUCTION

Why Sample?

Biomolecular behavior can be substantially
characterized by the states of the system of
interest—that is, by the configurational energy
basins reflecting the coordinates of all con-
stituent molecules in a system. These states
might be largely internal to a single macro-
molecule, such as a protein, or more generally
involve binding partners and their relative co-
ordinates. But regardless of the complexity of a
system, the states represent key functional con-
figurations along with potential intermediates
for transitioning among the major states. The
primary goal of equilibrium computer simula-
tion is to specify configurational states and their
populations. A more complete, mechanistic de-
scription would also include kinetic properties
and dynamical pathways (147). Nevertheless,
even the equilibrium description provides a ba-
sic view of the range of structural motions of
biomolecules and can serve more immediately
practical purposes such as for ensemble docking
(56, 65).

The basic algorithm of biomolecular sim-
ulation, molecular dynamics (MD) simulation,
has not changed substantially since the first MD
study of a protein more than 30 years ago (82).
Although routine explicit-solvent MD simula-
tions are now four or five orders of magnitude
longer (i.e., 100–103 ns currently), modern MD
studies still appear to fall significantly short
of what is needed for statistically valid equi-
librium simulation (36, 38). Roughly speak-
ing, one would like to run a simulation at
least 10 times longer than the slowest impor-
tant timescale in a system. Unfortunately, many
biomolecular timescales exceed 1 ms, and in
some cases by orders of magnitude (44).

Despite the outpouring of algorithmic ideas
over the past decades, MD largely remains the
tool of choice for biomolecular simulations.
While this staying power partly reflects the
ready availability of software packages, and per-
haps some psychological inertia, it also is in-
dicative of a simple fact: No other method can

42 Zuckerman

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

01
1.

40
:4

1-
62

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
G

ue
lp

h 
on

 0
6/

10
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



BB40CH02-Zuckerman ARI 30 March 2011 8:38

MD: molecular
dynamics

GPU: graphics
processing unit

CPU: central
processing unit

routinely and reliably outperform MD by a sig-
nificant amount.

This review employs several points of view
in considering efforts to improve sampling.
First, it attempts to define the equilibrium sam-
pling problem(s) as precisely as possible, which
necessarily includes discussing the quantifica-
tion of sampling. Significant and substantiated
progress is not possible without clear yard-
sticks. Second, a brief discussion of how sam-
pling happens—i.e., how simulations generate
ensembles and averages—provides a basis for
understanding numerous methods. Third, the
review attempts to examine a fairly wide array
of modern algorithms—most of which are un-
derpinned by a surprisingly small number of
key ideas. The algorithms and studies are too
numerous to be reviewed on a case-by-case ba-
sis, but a bird’s-eye view is informative; more
focused attention is paid to apparently conflict-
ing statements about the replica exchange ap-
proach, however. Fourth, special emphasis is
be placed on novel uses of hardware—graphics
processing units (GPUs), random-access mem-
ory (RAM), and special central processing units
(CPUs); this new front in sampling efforts has
yielded rather clean results in some cases. Us-
ing hardware in new ways necessarily involves
substantial algorithmic efforts.

This review is limited. At least a full volume
would be required to comprehensively describe
sampling methods and results for biomolecular
systems. This review therefore aims to primar-
ily catalog key ideas and principles of sampling,
along with enough references for the reader to
delve more deeply into areas of interest. The
author apologizes for the numerous studies that
have not been mentioned because of space lim-
itations or because he was not aware of them.
Other review articles (e.g., 4, 17) and books
on simulation methods (2, 32, 62, 105) are
available.

WHAT IS THE SAMPLING
PROBLEM?

Although scientists actively working in the field
of biomolecular simulation may assume the

essential meaning of the sampling problem is
universally accepted, a survey of the literature
indicates that several somewhat different
interpretations are implicitly assumed. An
individual’s understanding of the sampling
problem and, accordingly, success or failure in
addressing the problem surely will dictate the
choice of methodology.

A Simple View of the Equilibrium
Sampling Problem

Equilibrium sampling at constant tempera-
ture and fixed volume can be concisely iden-
tified with the generation of full-system con-
figurations, x, distributed according to the
Boltzmann-factor distribution:

ρ(x) ∝ exp[−U (x)/kB T ], 1.

where ρ is the probability density function, U
is the potential energy function, kB is Boltz-
mann’s constant, and T is the absolute temper-
ature in Kelvin units. The coordinates x refer
(in the classical picture assumed here) to the co-
ordinates of every atom in the system, includ-
ing solute and solvent. Note that other ther-
modynamic conditions, such as constant pres-
sure or constant chemical potential, require ad-
ditional energy-like terms in the Boltzmann
factor (147), but here we shall consider only
the distribution of Equation 1 for clarity and
simplicity.

Performing equilibrium sampling requires
access to all regions of configuration space, or
at least to those regions with significant popula-
tions, and that configurations have the correct
relative probabilities. This point is further dis-
cussed below.

Ideal Sampling as a Reference Point

In practice, it is nearly impossible to gener-
ate completely independent and identically
distributed (i.i.d.) configurations—obeying
Equation 1—for biomolecules. Both dynamical
and nondynamical methods tend to produce
correlated samples (38, 41, 73, 86, 141). Nev-
ertheless, such ideal sampling is a highly useful
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Figure 1
A schematic energy landscape of a protein. Both the folded and unfolded states
generally can be expected to consist of multiple substates, fi and ui, respectively.
Transitions among substates themselves could be slow, compared with
simulation timescales. The sampling problem is sometimes construed to
involve generating configurations from both folded and unfolded states; the
text discusses when this view is justified.

reference point for disentangling complications
arising in practical simulation methods that
generate correlated configurations.

Consider a hypothetical example in which an
equilibrium ensemble of N i.i.d. configurations
has been generated according to Equation 1 for
a biomolecule with a complex landscape. Re-
gions of configuration space with probability
p > 1/N are likely to be represented in the en-
semble, and this is true regardless of kinetic
barriers among states. Conversely, regions with
p < 1/N are not likely to be represented,
whether or not the region is interesting. For
instance, the unfolded state might be an appro-
priate part of a size N ensemble, but this will
depend on the system (i.e., on the free energy
difference between folded and unfolded states)
and on N (see Figure 1 and the discussion
below).

Goals and Ambiguities in
Equilibrium Sampling

The question, “What should be achieved in
equilibrium sampling?” can be divided into
at least three subquestions. First, for a given

problem (defined by the specific system and a
specified initial condition), there is the question
of defining success—When is sampling suffi-
cient? Usually, the goal of equilibrium simu-
lation is to calculate observables of interest to
a level of precision sufficient to draw physi-
cal conclusions. Yet the variables of interest
vary from study to study. It therefore seems
more reasonable to set a goal of generating an
ensemble of configurations from which arbi-
trary observables can be calculated. In rough
terms, let us therefore assume that the goal is
to calculate Neff effectively independent con-
figurations, where presumably it is desirable to
achieve N eff > 10. Larger values may often
be necessary, however, because fractional un-
certainty will vary as 1/

√
N eff for slower-to-

converge properties such as state populations.
This issue is addressed further below.

The other questions are probably the most
pressing, starting with, “What type of system is
to be sampled?” A basic distinction that seems to
appear implicitly in the literature is whether the
unfolded state is important in the system. In this
context, importance would usually be defined
by whether a system exhibits a significant equi-
librium unfolded fraction—say, roughly equal
probabilities p(folded) ∼ p(unfolded). Indeed,
some evaluations of sampling methods have
specifically targeted such a balance (48, 102),
e.g., by adjusting the temperature. A third ques-
tion concerns initial conditions, which some-
times correspond to the unfolded state. When
will the initial conditions be important? This
issue is addressed separately below.

These questions arise in the first place be-
cause all available practical sampling methods
for biomolecules are imperfect in the sense of
producing correlated configurations. In ideal
equilibrium sampling, by contrast, the suffi-
ciency of sampling is fully quantified in terms
of the number N of independent configurations
and can be assessed objectively in terms of ob-
servables of interest. The notion of an initial
condition is irrelevant in ideal sampling be-
cause there are no correlations. Also, the values
of p(folded) and p(unfolded) have no effect on
sampling quality, which is fully embodied in N;
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instead, it is N that determines which states are
represented in the ensemble and the appropri-
ate frequencies of occurrence.

Issues surrounding initial conditions and
the unfolded state. A typical simulation of
a protein can be described as one intended
to sample the folded (presumably functional)
state, which may consist of a number of sub-
states as in Figure 1. One or more of the folded
substates may be partially disordered. So long as
the simulation is initiated in or near one of the
nominally folded substates, the resources re-
quired to sample it will not depend significantly
on the initial conditions. Rather, timescales for
transitioning among all folded substates will
dominate the computing cost. In a dynamical
simulation, after all, it is the transitions among
substates that yield estimates for substate pop-
ulations and hence the equilibrium ensemble.

Sensitivity to initial conditions can become
important when the unfolded state is involved.
Even when the goal is to sample the equilibrium
ensemble of an overwhelmingly folded protein,
the initial condition can come into play if it in-
troduces an anomalously long timescale. Con-
sider beginning an equilibrium simulation of
the landscape of Figure 1 in the unfolded sub-
state labeled u6. Depending on details of the
system, the time required to find the folded
state could easily exceed the time for sampling
folded substates. Thus, such a simulation must
first solve a search problem before sampling can
begin.

Aside from the issue of initial conditions, the
relative importance of the unfolded state can
be considered in the context of the folding free
energy, which is defined on the basis of the ratio
of probabilities for unfolded and folded states:

p(folded)/p(unfolded) = exp(−�Gfold/kB T ).
2.

Consider the value �Gfold ∼ −3 kcal/mol
∼ −5kB T , which implies the unfolded state
is occupied 1% of the time or less. In ensem-
bles with fewer than 100 independent config-
urations (N eff < 100), such an unfolded state
typically should not be represented. In practical

terms, because key folded-state timescales often
exceed microseconds or even milliseconds, it is
unlikely that a simulation of a protein in folding
conditions in the current era will contain a suf-
ficient number of independent configurations
for the unfolded state to be represented.

Note that we have assumed it is straightfor-
ward to distinguish folded and unfolded con-
figurations. In reality, there may be a spec-
trum of disordered states in many systems and
hence ambiguity in defining folded and un-
folded states.

SAMPLING BASICS: MECHANISM,
TIMESCALE, AND COST

Transitions Provide the Key
Information in Sampling

The problem of equilibrium sampling can
be summarized as determining the metastable
states and their relative populations, but how
are populations actually determined by the sim-
ulation? In almost every practical algorithm,
the information comes from transitions among
the states. By switching back and forth between
pairs of states, with dwell times between transi-
tions acting as proxies for rate constants k, a dy-
namical simulation gathers information about
relative populations based on the equilibrium
balance relation pi ki j = p j k j i (147). With more
transitions, the error in the population esti-
mates pi decreases (102). Without transitions,
most algorithms have no information about rel-
ative populations. Consider the case of two in-
dependent simulations started from different
states that exhibit no transitions: Determining
the populations of the states then requires more
advanced analysis (136) that often may not be
practical.

Most advanced algorithms—such as the
varieties of exchange simulation—also require
ordinary transitions to gather population infor-
mation. That is, transitions among states within
individual continuous trajectories are required
to obtain sampling, as has been discussed pre-
viously (38, 102, 143). Any algorithm that uses
dynamical trajectories as a component can be
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Correlation time:
the time that must
elapse, on average,
between evaluations of
a specific observable
for the values to be
statistically
independent

MC: Monte Carlo

expected to require transitions among
metastable states in those trajectories.

It must also be pointed out that transitions
themselves do not necessarily equate to good
sampling. An example is when a high tempera-
ture is used to aid sampling at a lower temper-
ature. Although transitions are necessary, they
are not sufficient because of the overlap issue:
The sampled configurations ultimately must
be important in the targeted (e.g., lower tem-
perature) ensemble after they are reweighted
(72, 109).

Timescales of Sampling

Much of the foregoing discussion can be
summed up based on two key timescales. (Even
if a sampling method is not fully dynamical,
analogous quantities can be defined in terms
of computing times.) The timescale that typi-
cally is limiting for simulations can be denoted
t∗
corr, which denotes the longest important equi-

librium correlation time. Roughly, this is the
time required to explore all the important parts
of configuration space once (73)—starting from
any well-populated (sub)state. For sampling the
landscape of Figure 1 under folding conditions,
t∗
corr would be the time to visit all folded sub-

states starting from any of the folded basins.
However, as also discussed above, initial con-
ditions may play an important role, and thus
we can define tinit as the equilibration time (or
burn-in time in Monte Carlo lingo). This is not
an equilibrium timescale, but the time necessary
to relax from a particular nonequilibrium ini-
tial condition to equilibrium. Thus, tinit is spe-
cific to the initial configuration of each simula-
tion. The landscape of Figure 1 under folding
conditions suggests tinit � t∗

corr for a simulation
started from a folded substate, but it is possible
to have significant values—even tinit > t∗

corr—
when starting from an unfolded state.

Factors Contributing to
Sampling Cost

A little thought about the ingredients of sam-
pling can help one understand successes and

failures of various efforts and, more impor-
tantly, aid in planning future research. The
most important ingredient to understand is
single-trajectory sampling, i.e., the class of
dynamical methods including MD, single-
Markov-chain Monte Carlo (MC), or any other
method that generates an ensemble as a sequen-
tially correlated list of configurations. Single-
trajectory methods tend to be the engine un-
derlying traditional and advanced methods.

The sampling cost of a trajectory method
can be divided into two intuitive factors:

Trajectory sampling cost

= (Cost per trajectory step)

×(Number of steps needed for sampling)

∼ (Cost of energy call)

×(Roughness of energy landscape). 3.

In words, a given algorithm requires a certain
number of steps to achieve good sampling (e.g.,
N eff � 1), and the total cost of generating
such a trajectory is simply the total cost per
step multiplied by the required number of steps.
Although this decomposition is trivial, it is in-
formative. For example, if one wants to use a
single-trajectory algorithm (e.g., MD or simi-
lar) where a step corresponds roughly to 10−15 s,
then 109–1012 steps are required to reach the
microsecond to millisecond range. Therefore,
unless the cost of a step can be reduced by
several orders of magnitude, MD and similar
methods likely cannot achieve sampling with
typical current resources. In a modified land-
scape (e.g., different temperature or model), the
roughness may be reduced, but again that re-
duction should be several orders of magnitude
or else be accompanied by a compensating re-
duction in the cost per step.

Among noteworthy examples, increasing
temperature decreases roughness but not the
cost per step, whereas changing a model (i.e.,
modifying the potential energy function U) can
affect both the roughness and the step cost.
Both strategies sample a different distribution,
which may be nontrivial to convert to the tar-
geted ensemble. This type of understanding,
building on Equation 3, can aid in the analysis of
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Effective sample
size: the number of
statistically
independent
configurations to
which a given
ensemble of correlated
configurations is
equivalent

multilevel (e.g., exchange) simulations, which
require good sampling at some level (143, 148)
by single continuous trajectories.

QUANTITATIVE ASSESSMENT
OF SAMPLING

Although the challenge of sampling biomolec-
ular systems has been widely recognized for
years, and although new algorithms are reg-
ularly proposed, systematic quantification of
sampling has often not received sufficient at-
tention. Most importantly, there does not seem
to be a widely accepted (and widely used) yard-
stick for quantifying the effectiveness of sam-
pling procedures. Given the lack of a broadly
accepted measure, it is tempting for individual
investigators to report measures that cast the
most favorable light on their results.

Two key benefits would flow from a univer-
sal measure of sampling quality. As an example,
assume we are able to assign an effective sam-
ple size, Neff , to any ensemble generated in a
simulation; Neff would characterize the num-
ber of statistically independent configurations
generated. Sampling efficiency could then be
quantified by the CPU time (or number of cy-
cles) required per independent sample. The first
benefit is that we would no longer be able to
fool ourselves as to the efficiency of a method
based on qualitative evidence or perhaps the el-
egance of a method. Thus, the field would be
pushed harder to focus on a bottom-line mea-
sure. The second benefit is that demonstrating
the importance of a new algorithm would be
more straightforward. It would no longer be
necessary to directly compare a new method
with, perhaps, a competitor’s approach requir-
ing subtle optimization. Instead, each method
could be compared with a standard (e.g., MD),
removing ambiguities in the outcome. It would
still be important to test a method on a number
of systems (e.g., small and large, stiff and flex-
ible, implicitly and explicitly solvated), but the
results would be quantitative and readily veri-
fied by other groups. On a related note, there
has been a proposal to organize a sampling con-
test or challenge event to allow head-to-head

comparison of different methodologies (B.R.
Brooks, unpublished communication).

Numerous ideas for assessing sampling have
been proposed over the years (36, 38, 41, 73,
86, 88, 114, 116, 141), but it is important to di-
vide such proposals into absolute and relative
measures. Absolute measures attempt to give a
binary indication of whether convergence has
been achieved, whereas relative measures esti-
mate how much sampling has been achieved,
e.g., by an effective sample size Neff . The per-
spective of the present review is that absolute
measures fail to account for the fundamen-
tal statistical picture underlying the sampling
problem. To understand why, note that any
measured observable has an uncertainty associ-
ated with it; roughly speaking, sampling quality
is reflected in typical sizes of error bars, which
decrease with better sampling. There does not
seem to an unambiguous point where sam-
pling can be considered absolutely converged
(although a simulation effectively does not be-
gin to sample equilibrium averages until tinit has
been surpassed).

It is certainly valuable, nevertheless, to be
able to gauge in an absolute sense when sam-
pling is wholly inadequate. Absolute methods
that may be useful at detecting extremely poor
sampling include casual use of the ergodic mea-
sure (86) (i.e., whether or not it approaches
zero) and cluster counting (114).

Assessing Dynamical Sampling

The assessment of dynamical methods illus-
trates the key ideas behind the relative mea-
sures of sampling. For this purpose, dynamical
is defined as when trajectories consist of config-
urations with purely sequential correlations—
i.e., where a given configuration was produced
based solely on the immediately preceding con-
figuration(s). Thus, MD, Langevin dynamics,
and simple Markov-chain MC are dynami-
cal methods, but exchange algorithms are not
(147). Correlation times or their analogs for
MC can then readily be associated with any tra-
jectory that was dynamically generated. Assum-
ing, for the moment, that there is a fundamental
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RE: replica exchange

correlation time for overall sampling of the sys-
tem, t∗

corr, then an effective sample size can be
calculated from the simple relation

N eff � tsim/t∗
corr, 4.

where tsim is the total CPU time (or number of
cycles) used to generate the trajectory. Thus,
sampling quality is relative in that it should in-
crease linearly with tsim (86). In rough terms,
the absolute lack of sampling would correspond
to N eff � 1; physically, this would indicate that
important parts of configuration have been vis-
ited only once—e.g., a simulation shorter than
tinit + t∗

corr. (It would seem impossible to detect
parts of the space never visited.)

Work by Lyman & Zuckerman (73) has sug-
gested that a reasonable overall correlation time
t∗
corr can be calculated from a dynamical trajec-

tory. Those authors derived their correlation
time from the overall distribution in configura-
tion space, estimating the time that must elapse
between trajectory frames so that they behave
as if statistically independent. The approach has
the twin advantages of being based on the full
configuration-space distribution (as opposed to
isolated observables) and of being blindly and
objectively applicable to any dynamical trajec-
tory. Other measures meeting these criteria
would also be valuable; note, for instance, the
work by Hess (41) using principal components.

Assessing Nondynamical Sampling

If sampling is performed in a nondynamical
way, one cannot rely on sequential correlations
to assess sampling as in Equation 4. Many of
the modern algorithms that attempt to enhance
sampling, such as those reviewed below, are not
dynamical. Replica exchange (RE) (34, 51, 118)
is a typical example: If one is solely interested
in the ensemble at a single temperature, a given
configuration may be strongly correlated with
other configurations distant in the sequence at
that temperature and/or be uncorrelated with
sequential neighbors. At the same time, RE
does generate trajectories that are continuous in
configuration space, if not temperature, and it
may be possible to analyze these in a dynamical

sense (73) but care will be required (15). Other
algorithms, for instance, based on polymer
growth procedures (29, 35, 126, 138–140), are
explicitly nondynamical.

Two recent papers (38, 141) have argued
that nondynamical simulations are best assessed
by multiple independent runs. The lack of
sequential correlations—but the presence of
more complex correlations—in nondynamical
ensembles means that the list of configurations
cannot be divided into nearly independent seg-
ments for blocking-based analysis. Zhang et al.
(141) suggest that multiple runs be used to
assess variance in the populations of physical
states for two related reasons: Such states are
defined to be separated from one another by
the slowest timescales in a system, and relative
populations of states cannot be estimated prop-
erly without good sampling within each state.
State-population variances, in turn, can be used
to estimate Neff based on simple statistical ar-
guments (141); nevertheless, it is important that
states be approximated in an automated fashion
(see References 14, 91, and 141) to eliminate
the possibility for bias.

PURELY ALGORITHMIC
EFFORTS TO IMPROVE
SAMPLING

How can we beat MD? Despite 30 years of ef-
fort, there is no algorithm that is significantly
more efficient than MD for the full range of
systems of interest. Further, although dozens
of different detailed procedures have been sug-
gested, there are a limited number of qualita-
tively distinct ideas. Some of the strategies that
have been proposed are described below.

Replica Exchange and
Multiple Temperatures

The most common strategy is to employ el-
evated temperature. Many variations on this
strategy have been proposed; one of the earliest
suggestions was for spin systems (27). The ap-
proach that has been applied to biomolecules
most often is RE (also called parallel
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Figure 2
Many ways to use many levels. Sampling algorithms are schematized in the panels: Different horizontal levels represent different
simulation conditions such as varying temperature, model parameters, and/or resolution. A given ladder or set of conditions can be used
in different formulations: (a) exchange, (b) tempering, or (c) annealing.

Canonical
distribution:
the distribution of
configurations in
which the probability
of each is proportional
to the Boltzmann
factor of the energy at
constant temperature,
volume, and number
of atoms

tempering), in which parallel simulations wan-
der among a set of fixed temperature values
with swaps governed by a Metropolis criterion
(34, 51, 118). Many variations and optimiza-
tions have been proposed for RE (e.g., 8, 11,
26, 57, 64, 67, 93–95, 99–101, 103, 112, 121).
Closely related to RE is simulated tempering,
in which a single trajectory wanders among a set
of temperatures (75); once again, optimizations
have been proposed (e.g., 137) (Figure 2).

Less well known, but formally closely re-
lated to exchange and tempering, is annealed
importance sampling (AIS), in which a high-
temperature ensemble is annealed to lower
temperatures in a weighted way that preserves
canonical sampling (49, 87) (Figure 2). AIS has
been applied to biomolecules and optimizations
have been suggested (72, 74). AIS is nominally
a nonequilibrium approach, but in precise anal-
ogy to the Jarzynski equality (52), it yields equi-
librium ensembles. The J-walking approach
also starts from high temperature (28); a good
discussion of several related methods is given in
Reference 9.

How effective is replica exchange? RE sim-
ulation is both popular and controversial. Some
authors have noted weaknesses (19, 92, 148),
others have described successes (e.g., 48, 104,
102), and some conclusions have been more
ambiguous (3, 76, 96, 143). What is the real

story—how much better is RE than ordinary
MD?

Examination of the various claims and stud-
ies reveals that, in fact, there is little disagree-
ment so long as the particular sampling problem
is explicitly accounted for as discussed above. In
brief, when observables of interest depend sig-
nificantly on states that are rapidly accessed at
high temperature, then RE and related meth-
ods can be efficient (48, 102). A prime example
would be estimating the folded fraction near the
folding transition. On the other hand, when the
goal is to sample an overwhelmingly folded en-
semble, there does not appear to be significant
evidence of RE’s efficiency—so long as the ini-
tial condition is a folded configuration (i.e., in
terms of the timescales above, if tinit < t∗

corr).
This last qualification is important in under-
standing the data presented in Reference 48.

An intuitive picture underpinning the
preceding conclusions is readily gained by
revisiting the idea that state populations are
estimated by transitions between states in con-
tinuous trajectories. Indeed, this same picture
is the basis for discrete-state analyses (102,
143), which we can consider along with the
schematic landscape of Figure 1. Specifically,
the average of any observable A can be written
as 〈A〉 = ∑

i pi Āi , where i indexes all folded
and unfolded substates and Āi is the average of
A within substate i. If pi values are significant
in both folded and unfolded substates, then
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Force field: the
classical potential
energy function that
approximates the
quantum mechanical
Hamiltonian and
governs a simulation

Reweighting:
assigning probabilistic
values to
configurations based
on the ratio of the
targeted distribution
and the distribution
actually sampled

the elevated temperatures employed in RE
simulation can usefully promote transitions
to sample unfolded states (102). On the other
hand, if p(unfolded) � p(folded), where
p(folded) = ∑folded

i pi is the sum of folded
probabilities and p(unfolded) = 1 − p(folded),
then computer resources devoted to unfolded
substates can detract from estimating folded-
state observables; this line of analysis echoes
earlier studies (92, 143).

Whether or not RE is superior to MD, an-
other key issue is whether RE can provide suf-
ficient sampling (N eff > 10) for protein-sized
systems. It is far from clear that this is the case.
RE cannot provide full sampling unless some
level of the ladder can be fully sampled (148;
see above), and the ability for a simple dynami-
cal trajectory to sample the large configuration
space of a fully or partly unfolded state of a pro-
tein has not been demonstrated to date.

Energy-based sampling methods. Energy-
based schemes must be seen as closely related to
temperature-based strategies because the two
variables are conjugate to each other in the
Boltzmann factor (Equation 1). Yet because any
fixed-temperature ensemble can include arbi-
trary energy values, energy-based schemes must
account for this. Multicanonical schemes based
on sampling energy values (typically uniformly)
have been implemented for biomolecules (40,
85), including with the Wang-Landau device
(55, 132). Nevertheless, it should be remem-
bered that energy is not expected to be a good
proxy for the configurational coordinates of pri-
mary interest (Figure 1).

Hamiltonian Exchange
and Multiple Models

As schematized in Figure 2, the different
temperature-based methods sketched above
can readily be generalized to variations in force
field parameters (117), and even resolution as
discussed below. This is because the meth-
ods are based on the Boltzmann factor, which
is a general form that can apply to different
force fields U λ, each characterized by the set of

parameters λ = {λ1, λ2, . . .}. Thus, the funda-
mental distribution Equation 1 can be written
more explicitly as

ρ(x; T , λ) ∝ exp[−U λ(x)/kB T ]. 5.

The different schemes for using ladders of
different types—based on temperature, force
field parameters, or resolution—are depicted in
Figure 2. One of the first proposals for using
multiple models was given in Reference 69.

The simplest way to reduce the roughness of
a landscape (cf. Equation 3) is to maintain the
functional form of U but change parameters—
e.g., coefficients of dihedral terms. Changing
parameters in parameter files of common soft-
ware packages makes this route fairly straight-
forward. Note that unless force field terms are
explicitly removed, the step cost in Equation 3
remains unchanged.

Hamiltonian exchange has been applied in
a number of cases, for instance, using models
with softened van der Waals’ interactions and
hence decreased roughness (45). The approach
called accelerated MD employs ordinary MD
on a smoothed potential energy landscape and
requires reweighting to obtain canonical aver-
ages (39, 109); it can therefore be considered a
two-level Hamiltonian-changing algorithm.

Resolution Exchange and
Multiple-Resolution Approaches

Extending the multiple-model ideas a step fur-
ther leads to the consideration of multiple res-
olutions. To account for varying resolution in
the formulation of Equation 5, some of the λi

parameters may be considered prefactors that
can eliminate detailed interactions when set to
zero. Different, formally exact approaches to
using multiple resolutions have been proposed
(16, 68, 70, 71, 145), primarily echoing ideas in
RE and annealing.

Although multiple-resolution methods have
not produced dramatic results for canonical
sampling of large atomistic systems, they ap-
pear to hold unique potential in the context
of the sampling costs embodied in Equation
3. In particular, low-resolution models reduce
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Markov chain:
a sequence of
configurations in
which each is
generated by a
stochastic rule
depending on only the
immediately prior
configuration

cost and roughness to such an extent that some
coarse models permit good sampling for pro-
teins (N eff > 10) with typical resources (77,
135). It is not clear that a similar claim can
be made for high-temperature or modified-
potential simulations of stably folded proteins.

Multiple Trajectories Without
Multiple Levels

There is a qualitatively different group of al-
gorithms that also uses multiple trajectories,
but all under the same conditions—i.e., uni-
canonically (6, 47, 89)—in contrast to RE and
related methods. The basic idea of these meth-
ods is that when a trajectory reaches a new
region of configuration space, it can spawn
multiple daughter trajectories, all on the unal-
tered landscape. The daughter trajectories en-
able better sampling of regions that otherwise
would receive less computer resources, and re-
sources can be directed away from regions that
already are well sampled. In the context of
Markov-state models, this strategy can be op-
timized to increase precision in the estimate of
any observable (42). Exact canonical sampling
can also use a steady-state formulation of the
weighted ensemble path sampling method (6;
for related approaches see References 98, 125,
and 133).

Single-Trajectory Approaches:
Dynamics, Monte Carlo, and Variants

It is useful to combine a large group of
approaches—including MD, simple MC, and
Langevin dynamics (2, 32, 105)—and consider
them basic dynamics (147). These methods
generate a single trajectory (or Markov chain) in
which configurations are strongly sequentially
correlated and have no nonsequential correla-
tions. In other words, all these methods should
be expected to behave roughly like MD simu-
lation because the motion is intrinsically con-
strained by the high density and landscape com-
plexity of biomolecular systems. On the one
hand, basic dynamical methods generate phys-
ically realizable trajectories or nearly so; on the

other hand, they are severely limited by phys-
ical timescales as described above. In this sec-
tion, we explore some basic ideas of dynamical
approaches and also some interesting variants.

Are there real dynamics? Unlike many other
sampling algorithms, MD also simulates the
fundamental classical dynamics of a system.
That is, the trajectories produced by MD are
also intended to model the time dependence of
physical processes—over and above their value
for sampling.

Should MD trajectories provide much bet-
ter depictions of the underlying processes than
other basic simulation methods, e.g., Langevin
or MC simulation? The answer is not so clear.
First, like other methods, MD necessarily uses
an approximate force field (31). Second, on the
long timescales ultimately of interest, roundoff
errors can be expected to lead to significant de-
viations from the exact trajectories for the given
force field.

Somewhat more fundamentally, there ap-
pears to be a physical inconsistency in running
finite-temperature MD simulations for finite-
sized systems. Thermostats of various types are
used (32), some stochastic and some determin-
istic: Is there a correct method? By definition,
a finite-temperature system is not isolated but
is coupled to a bath by some physical pro-
cess, presumably molecular collisions. Because
the internal degrees of freedom of a bath are
not explicitly simulated, again by definition, a
bath should be intrinsically stochastic. The au-
thor is unaware of a first-principles prescription
for modeling the coupling to a thermal bath,
although sophisticated thermostats have been
proposed (32, 63). For MD simulations with
periodic boundary conditions, it is particularly
difficult to imagine truly physical coupling to a
bath.

A finite-temperature process in a finite sys-
tem is intrinsically stochastic, rendering ques-
tionable the notion that standard MD protocols
produce correct trajectories. To consider this
point another way, should we really expect in-
ertial effects to be important in dense aqueous
and macromolecular media?
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The foregoing discussion suggests, cer-
tainly, that Langevin simulations should also
be considered physical, but what about Monte
Carlo? Certainly, one can readily imagine un-
physical MC protocols (e.g., attempting trial
moves for atoms in the C-terminal domain of
a protein ten times as often as for those in
the N terminus). Nevertheless, so long as trial
moves are small and performed in a spatially
uniform way, one can expect MC dynamics to
be an approximation to overdamped (noniner-
tial) Langevin simulation (90, 110, 146).

Modifying dynamics to improve sampling.
Although changing temperature or model pa-
rameters automatically changes the dynamics
observed in MD or LD simulation, the dynam-
ics can be modified and maintain canonical sam-
pling on the original landscape, U(x) (84, 144).
This possibility defies the simple formulation
of the second line of Equation 3, because the
landscape roughness remains unchanged while
the number of required steps is reduced. The
method has been applied to alkane and small-
peptide systems, but its generalization to arbi-
trary systems has not been presented to the au-
thor’s knowledge. A better known and related
approach is the use of multiple time steps, with
shorter steps for faster degrees of freedom (119,
122), which can save computer time up to a limit
set by resonance phenomena (106).

Another approach to modifying dynamics is
to avoid revisiting regions already sampled by
means of a memory potential that repels the tra-
jectory from prior configurations (50, 60). This
strategy is called metadynamics, or the local-
elevation method, and typically employs prese-
lection of important coordinates to be assigned
repulsive terms. Although trajectories gener-
ated in a history-dependent manner do not sat-
isfy detailed balance, it is possible to correct for
the bias introduced and recover canonical sam-
pling (10). This approach could also be consid-
ered a potential-of-mean-force method.

The potential surface and dynamics can also
be modified by using a strategy of raising basins
while keeping barriers intact (39, 97, 129, 149).
The accelerated MD approach is a well-known

example, but achieving canonical sampling
requires a reweighting procedure (109). Such
reweighting is limited by the overlap issues con-
fronting many methods: The sampled distribu-
tion must be sufficiently similar to the targeted
distribution in Equation 1 so that the data are
not overwhelmed by statistical noise (72, 109).

Qualitatively, how can we think about
the methods just described? As dynamical
methods, they all gather information by tran-
sitions among states : More transitions suggest
greater statistical quality of the data. However,
methods that modify the potential surface may
increase the number of transitions, but the
overlap between the sampled and targeted dis-
tributions is generally expected to decline with
more substantial changes to the potential. In
this context, the modification of dynamics with-
out perturbing the potential (84, 144) seems
particularly intriguing, even though technical
challenges in implementation may remain.

Monte Carlo approaches. The term Monte
Carlo can be used in many ways, so it useful
to first delimit our discussion. Here, we want
to focus on single-Markov-chain Monte Carlo,
in which a sequence of configurations is gener-
ated, each one based on a trial move away from
the previous configuration. Typically, such MC
simulations of biomolecules have a strong dy-
namical character because trial moves tend to be
small and physically realizable in a small time
increment (90, 110, 146), whereas large trial
moves would tend to be rejected in any reason-
ably detailed model. As we shall see, however,
less physical moves sometimes can be used—
including move sets that do not strictly obey
detailed balance but instead conform to the
weaker balance condition (79). The various ex-
change simulations discussed above can be con-
sidered MC simulations because exchange is a
special kind of trial move and indeed governed
by a Metropolis acceptance criterion (147).

A key advantage of single-chain MC sim-
ulation is that it can be used with any energy
function, whether continuous or not, because
forces do not need to be calculated (32). MC
simulation is available for use with standard
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PMF: potential of
mean force

force fields in some simulation packages (46,
53), but it seems to be most commonly used in
connection with simplified models (110, 146).
The choice to use MC is usually for conve-
nience: It readily enables the use of simple or
discontinuous energy functions; furthermore,
MC naturally handles constraints such as fixed
bond lengths and/or angles. Substantial effort
has gone into developing trial moves useful
for biomolecules, with a focus on moves that
act fully locally (5, 113, 123, 127, 134). Two
studies have reported that MC employing
quasi-physical trial moves can be more efficient
than MD. (53, 124). MC has also been applied
to large implicitly solvated peptides (80).
Further, it is widely used in nonstatistical
approaches such as docking (62), and it also is
used in the Rosetta folding software (18).

For implicitly solvated all-atom peptides,
a novel class of trial moves has proven ex-
tremely efficient. Ding et al. (20) showed that
when libraries of configurations for each amino
acid were computed in advance, swap moves
with library configurations provided extremely
rapid motion in configuration space. Efficiency
gains based on measuring Neff suggested the
simulations were 100–1,000 times faster than
Langevin dynamics. Trial moves involving en-
tire residues apparently were successful be-
cause subtle correlations among the atoms were
accounted for in the precomputed libraries;
by comparison, internal-coordinate trial moves
of a similar magnitude (e.g., twisting φ and
ψ dihedrals) were rarely accepted (20). More
detailed discussion of Monte Carlo methods
can be found in recent reviews (23, 128) and
textbooks (2, 32).

Potential-of-Mean-Force Methods

Many methods are designed to calculate a po-
tential of mean force (PMF) for a specified set of
coordinates χ , and such approaches implicitly
are sampling methods. After all, the Boltzmann
factor of the PMF is defined to be proportional
to the probability distribution for the speci-
fied coordinates: ρ(χ ) ∝ exp[−PMF(χ )/kB T ]
(147). If the PMF has been calculated well (with

sufficient sampling along the χ coordinates and
orthogonal to them), then the configurations
can be suitably reweighted into a canonical
ensemble.

Numerous approaches are geared toward
calculating a PMF. Some, such as lambda dy-
namics, explore the full configuration space in
a single trajectory (58, 120), and can be cate-
gorized with modified dynamics methods, al-
though this is just a semantic issue. Many PMF
calculations employ the weighted histogram
analysis method (WHAM) (59), but alternatives
have been developed (1, 25, 81, 111, 142).

The main advantage that PMF methods
hope to attain is faster sampling along the χ

coordinates than is possible using brute-force
sampling. This perspective allows several ob-
servations. First, to aid sampling, the investi-
gator must be able to select all important slow
coordinates in advance—otherwise, sampling in
directions orthogonal to χ will be impractical.
Second, the maximum advantage that can be
gained over a brute-force simulation depends
on how substantial the barriers are along the χ

coordinates; if sampling along a coordinate is
slow because many states are separated by only
small barriers, then the advantage may be mod-
est. Last, for a PMF calculation to be successful,
different values of the χ coordinates must be
quantitatively related to each other: Depend-
ing on the details of the method, this can occur
via numerous transitions (e.g., 25, 58, 120, 142)
as given above, or by requiring well-sampled
subregions of overlap (59).

Nondynamical Methods

Methods that do not rely on dynamics for
sampling use a variety of distinct strategies, but
as there are relatively few such efforts, they are
grouped together for convenience. Recently,
for example, there have been a number of appli-
cations to biomolecules of old polymer growth
ideas (83, 131), sometimes termed sequential
importance sampling (66). Here, monomers
(e.g., amino acid) are added one at a time to
an ensemble of partially grown configurations
while (a) keeping track of appropriate statistical
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weights and/or (b) resampling (66). These
approaches have been applied to simplified
models of proteins and nucleic acids (29, 138–
140), to all-atom peptides at high temperature
(126), and more recently to all-atom peptides
by using presampled libraries of amino acid
configurations (78). The intrinsic challenge in
polymer growth methods is that configurations
important in the full molecule may have low
statistical probability in early stages of growth;
thus, application to large, detailed systems likely
will require biasing toward structural informa-
tion known for the full molecule (78, 138).

Some methods attempt a semienumerative
description of energy basins. For instance, the
mining minima method uses a quasi-harmonic
procedure to estimate the partition function of
each basin, which in turn determines the rela-
tive probability of the basin (7, 12). Although
such approaches have the disadvantage of re-
quiring an exponentially large number of basins
(130), they largely avoid timescale issues associ-
ated with dynamical methods because the basins
are located with faster search methods.

Another class of approaches has attempted
to treat the problem of estimating the free
energy of a previously generated canonical
ensemble (13, 43, 54, 136). In analogy to
PMF methods, knowledge of free energies
for independent simulations in separate states
(for which no transitions have been observed)
enables the states to be combined in a full
ensemble: The free energies directly imply the
relative probabilities of the states. The ideas
behind such methods are fairly technical and
beyond the scope of this review.

SPECIAL HARDWARE USE
FOR SAMPLING

In several cases, rather impressive improve-
ments in sampling speed have been reported
based on using novel hardware—and based on
novel uses of ordinary hardware. It is almost al-
ways the case that using new hardware also re-
quires algorithmic development, and that com-
ponent should not be minimized. Little is plug
and play in this business.

Parallelization, Special-Purpose
CPUs, and Distributed Computing

Perhaps the best known way to exploit hard-
ware is by parallelization. On the one hand,
parallelization typically makes sampling less ef-
ficient than single-core simulation when mea-
sured by sampling per core (or per dollar) due
to overhead costs. On the other hand, paral-
lelization allows by far the fastest sampling for
a given amount of wall-clock time (for a sin-
gle system) including record-setting runs (22,
30, 108). Recent examples of parallelization of
single-trajectory MD include a 10-μs simula-
tion of a small domain (30); microsecond and
longer simulations of membrane proteins on
the BlueGene (37) and Desmond (21) plat-
forms; and the longest reported to date, a mil-
lisecond simulation of a small globular protein
on the Anton machine (24, 108). The Anton
simulation reflects parallelization and the use of
special-purpose chips, and the chips alone can
be inferred to provide a speedup of at least 10
times compared to standard chips (107, 108).

Long simulations have significant value.
They allow the community to study selected
systems in great detail and to appreciate phe-
nomena that could not otherwise be observed.
Of equal importance, long simulations can alert
the community to limitations of MD and force
fields (31, 36).

There are other parallel strategies, such as
exchange simulation (see above) and distributed
computing. Distributed computing employs
many simultaneous independent simulations
or—via repeated rounds of simulation—quasi-
parallel computing with minimal communica-
tion among simulations. Although distributed
computing has been applied primarily to the
folding problem (115), recent work has shown
the value of multiple short simulations for pro-
ducing Markov-state models (47, 89). Such
models can be used to deduce both nonequi-
librium and equilibrium information—thus
canonical ensembles if desired. A distributed
computing framework can also be used for mul-
tilevel simulations such as RE (100) and in prin-
ciple for other quasi-parallel methods (6).
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Use of GPUs and RAM for Sampling

Means other than parallelization are used to ex-
ploit hardware. Implicit-solvent simulations of
all-atom proteins can be performed hundreds of
times faster by combining a GPU and a CPU
than with a CPU alone (33). Other work has
exploited the RAM available on modern com-
puters: When libraries of amino acid configura-
tions were precalculated, library-based Monte
Carlo sampled implicitly solvated peptides hun-
dreds and sometimes more than 1,000 times
faster than standard simulation (20). In a similar
spirit, tabulation of a scaled form of the gener-
alized Born implicit-solvent model led to sig-
nificant speed gain for the tabulated part (61).

CONCLUDING PERSPECTIVE

The main goal of this review has been to
array various methodologies into qualitative
groupings to aid the critical analysis necessary
to make progress in equilibrium sampling of
biomolecules. Where appropriate, an effort has
been made to offer a point of view on essen-
tial strengths and weaknesses of various meth-
ods. As an example, when considering popular
multilevel schemes (see above), users should be
confident that some level of the ladder can be
well sampled.

Interesting conclusions result from survey-
ing the sampling literature. Except in small sys-
tems, purely algorithmic improvements have
yet to demonstrably accelerate equilibrium

sampling of biomolecules by a significant
amount. Hardware-based advances have been
more dramatic, however. In fairness, demon-
strating the effectiveness of new hardware for
MD is much more straightforward than assess-
ing an algorithm.

To aid future progress, developing and us-
ing sampling yardsticks should be a key prior-
ity for the field. Such measures should probe
the configuration-space distribution in an ob-
jective, automatic way to measure the effective
sample size. Once a small number of standard
measures of sampling quality are accepted and
used, efforts naturally will focus on approaches
that make a significant difference. Currently,
there is a proliferation of nuanced modifications
of a small number of central ideas, without a
good basis for distinguishing among them. Un-
like in the history of theoretical physics, where
elegance has sometimes served as a guide for
truth, the sampling problem cries out for a
pragmatic focus on efficiency. After all, it is ef-
ficiency that ultimately permits us to address
biophysical and biochemical questions with
confidence.

In summary, there seems little choice but
to express pessimism on the current state of
equilibrium sampling of important biomolec-
ular systems. Keys to moving forward would
seem to be (a) exploiting hardware, (b) quanti-
fying sampling to determine which algorithms
are more efficient than MD, and (c) employ-
ing large-resource simulation data to provide
benchmarks and guide future efforts.

SUMMARY POINTS

1. The subtleties in defining the equilibrium sampling problem have to do with initial
conditions and the targeted number of independent configurations.

2. MD simulations on typical hardware remain several orders of magnitude shorter than
known biological timescales.

3. Dozens of algorithmic variants are available for biomolecular simulation, but none has
been documented to yield an order of magnitude improvement over standard MD in the
range of systems and conditions of primary interest.

4. Algorithms typically have not been assessed by a standard measure, but some such mea-
sures are now available.
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5. Isolated instances of high algorithmic efficiency (compared to MD) have been reported
in small systems and/or special conditions.

6. Novel uses of hardware (CPU, GPU, and RAM) have yielded some of the most dramatic
and demonstrable advances.

FUTURE ISSUES

1. Better sampling should reveal much more of the biophysics and biochemistry that mo-
tivates biomolecular simulations. We still do not know the scales of typical equilibrium
fluctuations in large biomolecules.

2. The degree of sampling quality achieved by simulations must be assessed objectively and
quantitatively.

3. Progress in sampling can be expected to come from the combination of novel algorithms
and novel hardware use.

4. Although current simulations typically use all-atom models at the expense of poor sam-
pling, it is possible that reduced or hybrid all-atom/coarse-grained models will yield a
better overall picture of equilibrium fluctuations.
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