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Ratcheted molecular-dynamics simulations identify efficiently

the transition state of protein folding
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The atomistic characterization of the transition state (TS) is a fundamental step to improve the un-
derstanding of the folding mechanism and the function of proteins. From a computational point of
view, the identification of the conformations that build out the transition state is particularly cum-
bersome, mainly because of the large computational cost of generating a statistically sound set of
folding trajectories. Here we show that a biasing algorithm, based on the physics of the ratchet-and-
pawl, can be used to approximate efficiently the transition state. The basic idea is that the algorithmic
ratchet exerts a force on the protein when it is climbing the free-energy barrier, while it is inactive
when it is descending. The transition state can be identified as the point of the trajectory where the
ratchet changes regime. Besides discussing this strategy in general terms, we test it within a protein
model whose transition state can be studied independently by plain molecular dynamics simula-
tions. Finally, we show its power in explicit-solvent simulations, obtaining and characterizing a set
of transition-state conformations for Acyl-Coenzyme A-Binding Protein (ACBP) and Chymotrypsin

Inhibitor 2 (CI2). © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769085]

. INTRODUCTION

The transition state of biomolecular processes is particu-
larly important because it is the main determinant of the asso-
ciated rate. Unfortunately, being the most unstable state of the
process, its characterization is difficult. In the case of protein
folding, a perturbative technique where one measures the ef-
fect of amino-acid mutations on folding/unfolding rates, has
been successful in providing a structural characterization of
this evanescent state.! Although this procedure is experimen-
tally rather demanding, we have now information about the
structure of the transition state of tens of proteins.

With the improvement of the molecular force fields*?
that describes the interaction in proteins, it becomes more
interesting the attempt to characterize the folding transition
state without employing experimental information.*” Within
this context, the determination of the transition state implies
two challenging problems, namely the generation of folding
trajectories and the identification of the transition state along
each of them. Concerning the former, the most straightfor-
ward way is simply to perform molecular dynamics (MD)
simulations solving the equation of motion of the system.
In the case of proteins of realistic size and using realis-
tic force fields in explicit solvent, generating a statistically
sound number of folding trajectories is not trivial even if
one can use the fastest computers available.®? Smarter tech-
niques, comprising transition path sampling,'® milestoning,'!
bias annealing,'? and dominant reaction pathways'!* exploit
the fact that only a small subset of all possible trajectories is
statistically relevant, but these methods are computationally
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efficient when the total number of atoms is not large (typi-
cally in implicit-solvent models). Even if one can generate
efficiently folding trajectories, the problem of identifying the
transition state is still hard. The transition state between two
(meta)stable states is built out of the set of conformations for
which the probability of falling down to each of them is 1/2.
Consequently, the most direct way to identify the transition
state is to start several MD simulations from each of the con-
formations selected from a folding trajectory, and to count the
fraction of such trajectories which meet the native state before
meeting the denatured state (or vice versa), until this fraction
is exactly 1/2."> This procedure is very time consuming, but
is the only safe way to identify the transition state.'

Some years ago, Marchi and Ballone introduced the idea
of biasing MD simulations to generate efficiently trajectories
between conformations of a system, using an algorithm
based on the physics of the ratchet-and-pawl.!” It consists in
defining a ratcheting coordinate y and dumping the thermal
fluctuations along the direction of y opposite to the wished
target. The algorithm was later used to enhance the thermal
unfolding of proteins interacting with an implicit-solvent
force field.'!® Recently, ratcheted MD simulations were
used to repeatedly simulate the folding of single-domain
proteins in explicit solvent.”’ Using a simplified protein
model, a Beccara et al.?' employed a Onsager—Machlup
functional and showed that the ratcheted MD algorithm
produces trajectories that are overall statistically relevant,
thus validating the approach of Ref. 20.

In what follows, we will investigate whether it is possible
to use ratcheted MD simulations to obtain directly and
efficiently a good approximation of the conformations which
build out the transition state of protein folding. The basic
idea is that while climbing the main free-energy barrier

© 2012 American Institute of Physics
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which separates the denatured from the folded state, the
ratchet exerts work, while descending on the other side it is
essentially off. The transition between the two regimes marks
the transition state.

Although the whole goal of this work is to develop a
method that can be used for realistic systems in explicit sol-
vent, we first validate it using a model whose folding trajec-
tories can be generated by plain MD and whose transition
state can be obtained exactly using the committors method
of Ref. 15.

Il. THE MODEL AND THE SIMULATIONS

A model which is suitable for developing a computa-
tional strategy and validating it against the transition state ob-
tained with the exact method is a modified all-atom Go model,
where a non-specific interaction between hydrophobic atoms
is added on the top of the native structure. The G6 model as-
sures that folding can be simulated repeatedly also without
the ratcheting algorithm, in order to be able to obtain refer-
ence trajectories, while the hydrophobic interaction makes the
energy landscape more roughed, and thus more realistic. The
G0 implementation is that of Ref. 22, in which pairs of atoms
building native contacts interact with a Lennard—Jones poten-
tial whose minimum lies at €9 = —0.62 (in arbitrary units).
The hydrophobic potential has also the Lennard—Jones form
and acts between side chain carbons of ALA, VAL, LEU, ILE,
PHE, and TRP. The minimum of the potential lies at a dis-
tance of 0.35 nm, where the depth is €3, = —0.3. This value
of €y, has been chosen because it is the lowest which guar-
antees the folding of the proteins studied within an root mean
square deviation (RMSD) of 0.3 nm from the experimental
native conformation.

The simulations were carried out with a modifie
version of Gromacs,? using the topologies generated with the
SMOG web server.?® The time step used is 0.002 ps (time
units are merely nominal).

The specific heat, calculated with parallel-tempering
simulations,”’ is displayed in Fig. 1 and compared with that
for a plain GO model. As expected, the two-states character of
the denaturation transition diminished. However, the stability
of the native state increased, suggesting that the hydrophobic
interaction introduced in the model favors the native confor-
mation, where hydrophobic packing is optimized, more than
the denatured state. On the basis of this specific-heat plot, we
used the trajectory obtained at 7= 1 to generate 10 uncorre-
lated unfolded conformations to be used as initial states of the
folding simulations. The folding simulations were carried out
at 7= 0.91, which is regarded as room temperature.

From each of the 10 unfolded conformations we carried
out 10 simulations at 7 = 0.91 for 6 ns each. The average
folding time, defined as the time needed to reach a RMSD of
0.4 nm, is T, = 1505 ps.

Similar simulations were carried out using the ratcheting
algorithm. The ratchet is implemented as in Ref. 20, that is
adding to the molecular potential a ratcheting term

d23, 24

@) = pu @), p(t) > pw(?)
Var(p(t)) = (1)
0, p(t) < pm(2),
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FIG. 1. The specific heat of ACBP (whose structure is displayed in the inset)
as a function of temperature for the model interacting through the modified
Go model (solid curve) and through a standard Go model (dashed curve). The
modified Go model displays a transition between the native and the denatured
state which is less cooperative than the standard Go model. The temperature
is expressed in energy units.

where

pt) = (@) — ytarget)2 2

and
Pm(t) = oTThlf p(7). 3)

The ratcheting coordinates y(¢) used in the present work are
either the distance d¢y of the contact map of a given pro-
tein conformation from the native contact map, or the RMSD
(in both cases Yy qe; = 0). The distance dcy, introduced by
Bonomi et al.,? is defined as

N 1/2
dey=IC—-Cll=| > C;-C*| . @&
Jj>i+2
were Cj; is the 7, j element of a N x N matrix defined as
i \P
=(%)

0, Tij > Feur,

rij = Feut

Cij(rij) = (5)

r;; is the distance between atom i and j and C is the defined
on the native state (corresponding to the experimental con-
formation, minimized according to the model potential). The
parameters used in these simulations are p = 6, g = 10, ry
= 0.35 nm, and r.,; = 1.23 nm.

Both in the case of plain MD and ratcheted simulations,
the sequence of events along the folding trajectories under
each set of conditions were studied calculating the matrix M;;
= 0(t(i, k) — 1(j, k)), where (i, k) is the time at which the
ith contact is stably formed in the kth simulation and 6 is the
Heaviside’s step function. This matrix satisfies M;; + M;; = 1
and each element M;; assumes the value 1 if the formation of
the ith contact precedes the formation of the jth, O if it follows
it, and 1/2 if the two are uncorrelated. The average matrix

o 1 ng
M;; = - ZMU’ (6)
¥ k=1
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where ng; = 100 is the number of trajectories, is interpreted as
the probability that the formation of the ith contact precedes
the formation of the jth. A quantity related to M_,j is the prob-
ability A; = ), £ M_[j/ (ny; — 1) that the jth contact is formed
after any other contact.

The order of contact formation in two trajectories was
compared using the distance

1
d(M, M') = — 3 [T = 8(Mij, M), (7)
s ij

between the associated matrices, where § is the Kronecker
symbol.

lll. RATCHETED TRAJECTORIES

A necessary condition for the ratcheting algorithm to
identify the correct transition state of folding is to gener-
ate statistically relevant trajectories. Failure of this condition
would lead to the identification of free-energy saddle points
not corresponding to the main transition state of the folding
process. Ratchet-generated trajectories are not expected to be
associated—as they are—to a large statistical weight, because
the corresponding folding time lies in the low—probability ini-
tial region of the folding-time distribution. In fact, such tra-
jectories run, in the space defined by the RMSD and dc¢y,
on the edge of the region where unbiased trajectory run (see
Fig. S2 in the supplementary materials?®). They are somewhat
distorted along the direction in which the ratchet is acting,
similarly to what found in Ref. 12. However, as suggested in
Ref. 20 and validated in this section in the case of two
model proteins, ratcheted MD simulations can provide the
most probable sequence of contact formation if carried out
in appropriate conditions. In this respect, ratcheted tra-
jectories can be regarded as a coarse graining over time
of the actual trajectories, which run parallel to the actual
trajectories.

As a reference we generated 100 trajectories with plain
MD simulations. The average folding time was 1505 ps
and all trajectories reached the native conformations in the
10000 ps made available for each of them. The mean dis-
tance d between each pair of matrix M;; (cf. Eq. (7)) is 0.37,
indicating that the sequence of events along the different fold-
ing trajectories are rather homogeneous (cf. Ref. 20). Briefly,
this sequence implies first the formation of most contacts in
the two terminal helices, than in the central helices and then
the tertiary contacts.

Similar simulations were carried out starting from the
same set of unfolded conformations, ratcheting the simula-
tion along the distance d¢ys of the contact map to the native
one with different values of the ratcheting constant k. Not all
the trajectories folded to the native conformation, but some
of them got stuck, reducing drastically the diffusivity of the
different parts of the protein and, essentially, freezing to non-
native conformations. These are excluded from the analysis
that follows. The fraction of stuck trajectories, displayed in
the upper panel of Fig. 2, increases with k. The same figure
also displays the average folding time, which decreases as the
effect of the ratchet is increased. The average folding time of

J. Chem. Phys. 137, 235101 (2012)
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FIG. 2. Comparison of the folding simulations of ACBP ratcheted along dcy
at different values of k with those generated by plain MD, corresponding to
k = 0. (upper panel) The average folding time (circles) and the fraction of
stuck trajectories which are not able to reach the native state (squares), as a
function of the ratcheting constant k. The latter is displayed in a logarithmic
scale, except in the case of the points marked as 0, which identify the simu-
lation carried out without ratcheting. (lower panel) The RMSE between the
matrix M;; calculated at k and that calculated at k = 0 (diamonds), the aver-
age distance d between the matrices M;; calculated at k and those calculated
at k = 0 (filled circles, the error bars indicate the standard deviation), and
within the matrices M;; calculated at k (empty circles).

ratcheted simulations has the only purpose of measuring the
computational time needed to generate a folding trajectory,
and has no physical meaning. The figure indicates that there
is a range of values of k around unity where simulations gen-
erate fast trajectories to the native conformations.

To assess the physical meaning of such trajectories, we
compared the order of native-contact formation to that of the
unbiased simulations. The mean distance d between each pair
of ratcheted trajectory is around 0.3 for any value of k and for
the unbiased trajectories (see lower panel in Fig. 2), indicat-
ing that the sequence of events in the ratcheted simulations
is as homogeneous as that of the MD trajectories. Also the
mean distance between the matrices associated to ratcheted
trajectories and those associated with plain MD trajectories
is 0.39 at all the values of k considered. Comparing the aver-
age matrices M_[j, one obtains that the root-mean-square error
(RMSE) between the matrix M_,j generated ratcheting the sim-
ulations and with plain MD is around 0.3 for all values of k
(cf. Fig. 2).

Summing up, the difference between ratcheted and plain
MD trajectories is comparable with the (small) differences be-
tween pairs of plain MD trajectories. Even when the ratchet
is strong, although the fraction of folding trajectories drops
drastically, the sequence of events in the few folding trajecto-
ries results correct.

A similar analysis has been carried out ratcheting the
simulation through a different coordinate, that is the RMSD
with respect to the native conformation. Usually this is re-
garded as a bad reaction coordinate.® In fact, attempts to fold
small proteins in explicit solvent ratcheting along the RMSD
coordinate at different values of the ratcheting constant have
failed.” The results of such simulations are displayed in
Fig. 3. Also in this case folding simulations display a
sequence of events that is similar to the one generated by
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FIG. 3. Comparison of the folding simulations of ACBP ratcheted along the
RMSD with those generated by plain MD. (upper panel) The average folding
time (circles) and the fraction of stuck trajectories which are not able to reach
the native state (squares), as a function of the ratcheting constant k. The latter
is displayed in a logarithmic scale, except in the case of the points marked as
0, which identify the simulation carried out without ratcheting. (lower panel)
The RMSE between the matrix M;; calculated at k and that calculated at k =0
(diamonds), the average distance d between the matrices M;; calculated at k
and those calculated at k = 0 (filled circles, the error bars indicate the standard
deviation), and within the matrices M;; calculated at k (empty circles). Here,
the values of k are given in energy units divided by nm.

unbiased simulations. The main difference with the data
obtained ratcheting along d¢yy is that in the present case there
is not a range of values of k at which ratchet is efficient. At
small values of & the folding time 7 is essentially identical to
that of the unbiased MD simulations. Only using values of k
larger than 10 one can observe a relevant decrease of 7y, but
here the fraction of folding sequences has become negligible.
However, the sequence of events results similar to that of
unbiased simulations, as shown in Fig. 3 by the values of
RMSE and average distance to the unbiased matrices. Con-
sequently it seems that, at least within this simplified model,
ratcheting along the RMSD is less efficient, but results in tra-
jectories which are not worse than those obtained ratcheting
on dCM-

ACBP is considered to fold according to a hierarchical
diffusion-collision model,?! where first elements of secondary
structure are formed, then diffuse around until they bind to-
gether to form native tertiary contacts. This pattern, which is
also observed in the present simulations, could favor the ap-
plicability of the ratchet. To check the generality of the above
results we have tested it with another case, namely CI2, which
is considered the prototype of proteins which fold according
to a nucleation model, without populating consistently sec-
ondary structures prior to the transition state. The results are
displayed in Fig. 4. Also in this case there is a range of k
where the ratchet is efficient, that is both the folding time and
the fraction of stuck trajectories are small. The efficiency is
smaller than in the case of ACBP, probably because in this
case the contact-map distance dcy, is not a reaction coordinate
as good as for a protein folding through a diffusion-collision
scenario. Anyway, the sequence of events results to agree with
that of a plain MD simulation, within the range of variability
of the latter (which is somewhat small than that of ACBP).

J. Chem. Phys. 137, 235101 (2012)
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FIG. 4. Comparison of the folding simulations of CI2 ratcheted along dcy
with those generated by plain MD. (upper panel) The average folding time
(circles) and the fraction of stuck trajectories which are not able to reach the
native state (squares), as a function of the ratcheting constant k. The latter is
displayed in a logarithmic scale, except in the case of the points marked as
0, which identify the simulation carried out without ratcheting. (lower panel)
The RMSE between the matrix M;; calculated at k and that calculated at k =0
(diamonds), the average distance d between the matrices M;; calculated at k
and those calculated at k = O (filled circles, the error bars indicate the standard
deviation), and within the matrices M;; calculated at k (empty circles).

IV. IDENTIFICATION OF THE TRANSITION STATE:
THE STRATEGY

The analysis of the time-dependence of the degrees of
freedom associated with the ratchet can provide some infor-
mation to localize the transition state of the system. The basic
idea is that, as the system climbs the free energy barrier whose
top is the transition state, the ratchet is very active and thus
Viar 1s well above zero. When the system crosses the transi-
tion state and descends the free-energy barrier, the ratchet is
essentially inactive and V,,, small. The point of the trajectory
where V,,, drops is hypothesized to be the transitions state.

Before verifying this hypothesis, we attempt to formalize
the above idea, in a simple scenario where the molecular
force can be approximated in an elementary form. Assuming
that the dynamics of the degrees of freedom X of the system
can be described by an over-damped dynamics

dx 1 _-_ - -
E—;[f(X)—kAp-up+n], ®)
where y is the friction coefficient; n is the thermal noise
satisfying (7(¢) - (")) = 2NTy)3(t — t'); u, the versor that
defines the direction of the ratcheting coordinate p; Ap(?)
= p — p,, is the difference between the value of the ratcheting
coordinate and its minimum; and Boltzman’s constant is set
to 1. Let us assume that p is a good reaction coordinate, that is
it moves according to the slowest time scale of the system,>
and that the associated diffusion constant is approximately
equal to that of the microscopic degrees of freedom. Then,
the dynamics of p can be written as
o = Uy~ kol ©)
where f, is the effective force which moves the one-
dimensional degree of freedom p (i.e., minus the gradient
of the free energy). By virtue of its definition, p,, follows
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the dynamics

dpm

o= 7 8800 (—dp/dn), (10)

where 6 is a step function that is 1 if its argument is positive
and O otherwise. Consequently the quantity Ap which
measures the activity of the ratchet follows:

d(Ap) LU, —kAp+n] if Ap > 0ordp/dt >0
o if Ap = 0 and dp/dt < 0.
(11)

If the molecular force f pushes the system downhill towards
its target state and it is overwhelming with respect to the
typical diffusive force (i.e., f, < —(2Ty/ADY?), then Ap is
approximately zero along the associated part of trajectory.

A more common scenario is that where the system is run-
ning downhill, the diffusive term is not negligible, but the
molecular force is overwhelming with respect to the ratchet
(ie., f, € —kAp), so that we can neglect the term propor-
tional to k in Eq. (11). To make things simple, let’s focus on a
fraction of the trajectory that is short enough that the force f,
can be approximated as constant. In this case Ap experiences
a diffusion biased by a constant force, and by a trap at 0. In
fact, when Ap = 0 the system can move away only if dp/dt
> 0 (cf. the condition controlling the first line of Eq. (11));
thus the exit rate w,,;, from the trap is proportional to the
probability that n > |f,| (At#/2Ty)"2. This case is analogous to
that of a massive particle diffusing on a slope with a trap at the
bottom. Since the stochastic noise 7 is normally distributed,
Weyi; 1S proportional to erfc(| f,,| (At/2Ty)"/?). We can assign

fZ .
Q/m)\ 2Tk exp [—ﬁ] + fp(Tk)l/z (1 + erf[—(Zk];”)./ZD UT 2f,

J. Chem. Phys. 137, 235101 (2012)

to the trap an effective energy — T log(%erfc[| fo |(ﬁ—’y)1/2]), o)

that w,,;, is equal to Kramers escape rate. In the neighborhood
of 0, Ap will soon populate a distribution given by

-1

2 ar \'? :
zerfe | | f,l (m> if0 < Ap <€
p(Ap) = (12)
1 |folA0 :
Z €Xp [_T] if Ap > e,
where € is the (small) length which defines the trap and
—1
Z =2 e |f|<m>l/2 + (13)
=2 -erfc — .
"\2ry | fole

The average value of Ap expected in this regime is then

(Ap) = r’ o T
P el £ I(AD /2T ) PT + |, IT | fol
(14)

On the other hand, if the system is climbing the free-
energy barrier (i.e., f, 3> (2Ty/Ap'?), the conditions Ap = 0
and dp/dt < 0 in Eq. (11) are never satisfied simultaneously.
Consequently,

kA2
5Ap prp}, 15)

1
A = — —
p(Ap) ZeXp[ T

where

xT\"? 1 fo

giving the average

(Ap) =2

The transition state is the intermediate scenario where f,,
vanishes. Assuming |f,| < (2Ty/At)"2, one can neglect the
molecular force in Eq. (11), obtaining

2/Z if0<Ap <€
p(Ap) = (18)
% p [—%] if Ap > e,

where Z = 2 + (wk/2T)"?/e. This is an ideal distribution, be-
cause it is unlikely that the system spends enough time at the
transition state to populate it. However, it can be useful to
obtain the average A p which separates the rising from the de-
scending regime. In fact, we get

2T o (2T \'? 19)
4dke + 2ukT)!/? wk '

The behavior of Ap in a typical ratcheted simulation is
displayed in the middle panel of Fig. 5. Although it is diffi-

(Ap) =

(k3T)'/? (1 + erf [—(2,{';”)1/2]) k

A7)

cult to distinguish a priori where the system is climbing and
where it is descending the folding free-energy barrier, it is
reasonable to argue that in part of the trajectory in the range
30 < t < 220 the system is climbing, while in the range 220
< t < 250 it is descending. The distribution p(A p) associated
with these two parts of the trajectory are displayed in Fig. 6
with solid black and red curves, respectively. The black curve
is fitted by Eq. (15), the correlation coefficient being 0.958.
The red curve displays a sharp peak at low values of Ap
as predicted by the first line of Eq. (12), allowing to obtain
€ = 0.03, while the remaining part is fitted by the sec-
ond line of Eq. (12), with a correlation coefficient of 0.965.
This means that, although the molecular force f, certainly
depends on the specific point of the trajectory, the system
crosses the free-energy barrier experiencing an effective force
of f, = 0.75 and descend it pushed by an effective force
[ =—145.
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FIG. 5. The typical behavior of the contact-map distance to the native con-
formation dcy, the ratchet displacement Ap and the RMSD to the native
conformation in a folding trajectory ratcheted with k = 1. The light curve
in the middle panel is a 0.8-ps running average of the underlying curve. The
vertical dashed bar marks the TS identified in they trajectory.

The value of (Ap) obtained in Eq. (19) can be used to
estimate the order of magnitude of the threshold to distin-
guish the regime where the system is climbing the free-energy
barrier from that in which it is descending, that is the transi-
tion state. For example, in the simulation we performed with
T=0.91 and k = 1, we obtain (Ap) = 0.076 (cf. Fig. 5).

V. IDENTIFICATION OF THE TRANSITION STATE:
RESULTS

Before applying the strategy discussed above, the actual
TS was identified through a commitment analysis'> on 10
plain MD folding trajectories of ACBP. From each of them we
extracted a variable number (from 5 to 10) of conformations
chosen in the region where the value of d¢y, displays a rapid

FIG. 6. The histogram of Ap obtained from the parts of the trajectory of
Fig. 5 which ranges between nominal times 30 and 220 ps, presumably cor-
responding to the climbing of the folding free-energy barrier (black solid
curve) and between 220 and 250 ps, presumably corresponding to the descent
to the native state (red solid curve). The fit obtained by Eq. (15) (dashed black
curve) and (12) (dashed red curve) are also indicated.
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FIG. 7. The folding probability pfyq, that is the probability of reaching the
native state before reaching the denatured state, calculated initiating unbiased
simulations from a set of conformations extracted from 10 folding simula-
tions. The conformations displaying ps,q = 0.5 build out, by definition, the
folding transition state.

decrease to low values. From each of them we started 100
plain MD simulations, calculating the probability py,, that the
simulation reaches the native basin (operatively defined from
dcy < 19) before reaching the denatured basin (operatively
defined from dc¢y > 25). The conformations displaying 0.4
< prola < 0.6 are defined as TS conformations. The behav-
ior of pgye with respect to the value of d¢y of the associated
conformation is displayed in Fig. 7. The associated conforma-
tions are displayed in Fig. 8(a). They are remarkably native-
like, displaying an average RMSD to the native conformation
of 0.68 £ 0.17 nm, and fairly homogeneous, their mutual av-
erage RMSD being 0.85 £ 0.17 nm.

For each trajectory generated with the ratcheting algo-
rithm, we have looked for the TS in the region where the
RMSD to the native conformation was in the range between
0.2 nm and 1 nm. The putative TS is the conformation such
that the average value of Ap in the preceding 8 ps is larger
than that predicted by Eq. (19) and in the following 0.8 ps
is smaller. In this way, we could identify a conformation in
64% of trajectories at k = 0.1, in the 86% of the trajectories
at k = 1 and in the 49% of trajectories at k = 20. In no cases
more than one conformation is identified. Although the fluc-
tuations in Ap are large, the fact that the TS, as identified by
these algorithmic rules, separates a region where the average
Ap displays a local maximum to that in which it displays a
minimum is apparent to the naked eye (cf. the yellow curve,
indicating a running average, in Fig. 5. See also Fig. S3 in the
supplementary material®®).

After having overcome the TS and reached the native
state (i.e., in the region where the RMSD is smaller than ~0.3
A), the values of Ap climbs again to large values because
the systems tries to reach the very conformation which we set
as target of the ratchet, which is structurally similar, but not
precisely the free-energy minimum of the system at the tem-
perature at which we carry out the simulations (cf. Fig. S1 in
the supplementary materials?®).

Note that there are also other points of the trajectory, be-
sides the TS, in which the average Ap is close to zero. These
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(b)

FIG. 8. Comparison between the Go-model transition-state conformations for ACBP obtained by plain MD simulations through the commitment analysis (a)
and those obtained by ratcheted simulations as explained in the text (b). The width and the color of the average conformations denote the RMS fluctuations.

corresponds to crossings of free-energy barriers in the high-
energy region of the rough energy landscape of the protein.
However, these points correspond to large values of RMSD
and d¢y, and consequently cannot be confused with the main
TS.

The structural properties of the conformations identified
by the above criteria are summarized in Fig. 9. The average
contact—map distance is comparable to that of the actual TS
at all values of k. The structural homogeneity of the TS con-
formations is slightly decreasing with the increasing of k, the
mutual average RMSD going from 0.85 nm at k = 0 to 0.61
nm at k = 20. The average similarity of the TS conformations

40
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FIG. 9. Structural properties of transition-state conformations obtained at
various values of k and obtained from plain MD simulations (k = 0). (up-
per panel) The average distance between the contact map of TS conforma-
tions and that of the native state. (lower panel) The average RMSD between
pairs of TS conformations at each value of k (black squares), the average
RMSD between TS conformations obtained at different values of k and those
obtained by plain MD simulations (red diamonds) and average RMSD to
the native conformation (blue circles). The error bars indicate the standard
deviation.

obtained from ratcheted simulations to the actual TS confor-
mations is within the error bars o associated with the intrinsic
variability of the TS conformations (the difference between
the two averages being ~0.2¢; black error bars in the figure).
Also the RMSD to the native conformation displays a slight
decrease from 0.68 nm at k = 0 to 0.46 nm at k = 20. Sum-
ming up, at all values of k analyzed, ratcheted MD simulations
can identify TS conformations which are structurally simi-
lar to the actual TS conformations, becoming slightly more
native-like at increasing k.

A representation of the protein in the TS obtained at k = 1
is displayed in Fig. 8(b). The main differences between the ac-
tual TS and that obtained by ratcheted conformation at k = 1
involves the terminals of the protein. The actual TS displays
large fluctuation in the C-terminal part of the chain and, to a
smaller extent, in the N-terminal and in the loop region. The
ratcheted TS overestimates the fluctuations in the C-terminal
region, while it slightly underestimates those involving the
loop. Anyway, the two sets are remarkably similar.

Overall, the TS conformations obtained from the mod-
ified Go model are strikingly native-like. This is not unre-
alistic, since a similar result was obtained for a number of
proteins by Paci et al.” using not a Go model, but a direct
modelization of experimental phi-values.

The folding probabilities py,;q obtained from 10 unbiased
simulation starting from some of the putative TS find above
are displayed in Table I. The intermediate values found for
Drola indicate that these conformations behave as actual TS.
However, a closer look at the unbiased folding trajectories
(see Fig. S5 in the supplementary materials’®) show that the
protein, starting from the putative TS, first moves closer to the
actual TS (i.e., those found by the very definition of TS) and
then moves towards either the native or the denatured state.
Consequently, putative TS are structurally very similar to the
actual TS, but lie at slightly higher energy, in the direction
perpendicular to the main folding path (cf. also Fig. S2 in the
supplementary materials®®).
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TABLE 1. The result of commitment analysis carried out on TS conforma-
tions obtained from the trajectories generated ratcheting along dcys and along
the RMSD.

Ratchet on dcyy Ratchet on RMSD
dem RMSD Pfold dem RMSD Pfold
14.1 0.80 0.4 13.8 0.69 0.6
13.4 0.71 0.3 13.1 0.61 04
13.1 0.74 0.6 12.4 0.51 0.6
13.3 0.57 0.6 14.3 0.47 0.7
12.5 0.40 0.7 13.1 0.40 0.7

A similar procedure can be applied on trajectories gener-
ated ratcheting along the RMSD, and provides TS conforma-
tions which are comparable to those obtained ratcheting along
dcy (cf. Fig. S4 in the supplementary materials?® and Table I).
The similarity between the TS conformations obtained ratch-
eting along two different directions further testifies to the cor-
rectness of the result.

Another example is the structural characterisation of the
TS of ACBP under an external force,>> where the transition
state in explicit solvent found with the present algorithm is
consistently less native-like.

VI. AN EXPLICIT-SOLVENT CASE: THE TRANSITION
STATE OF ACBP AND CI2 SIMULATED WITH THE
AMBER FORCE FIELD

The very goal of the strategy discussed above is not the
identification of the transition state with simplified protein de-
scriptions, but in realistic explicit-solvent models. In order to
test the algorithm we analyzed the folding and unfolding tra-
jectories generated using the ratcheting algorithm in Ref. 20.
Using the Amber03 force field,** we simulated 10 folding and
10 unfolding trajectories of ACBP and CI2 in a dodecahedron
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box of 261 nm? solvated with ~10* TIP3P water molecules,
ratcheting along d¢y with a ratcheting constant k =1 kJ/mol
for 50 ns at T = 300K. All trajectories folded within 0.25 nm
from the native conformation.

The transition state is identified with the same strategy
used in the G6-model simulations, requiring that the average
of Ap in the preceding 8 ps is larger than 1 and in the follow-
ing 8 ps is smaller than 2 (this is a somewhat looser condition
than for the GO model, but guarantees the identification of a
unique TS for each trajectory), while the RMSD to the native
state should range between 0.3 and 1 nm. The conformation
thus obtained are displayed in Fig. 10. They are less homo-
geneous than those obtained by means of the G6 model, the
average mutual RMSD being 0.82 £ 0.19 nm in the case of
ACBP and 0.76 £ 0.14 nm in the case of CI2. Their RMSD
to the native state is 0.68 % 0.19 nm in the case of ACBP and
0.70 £ 0.17 nm in the case of CI2.

In order to validate the TS without carrying out a commit-
ment analysis which is extremely time-consuming in explicit
solvent,?®> we have compared the TS conformations obtained
from the folding trajectories to the T'S conformations obtained
by unfolding trajectories under the same conditions. Accord-
ing to the principle of detailed-balance, under the same con-
ditions the two TS must be identical.*® The TS conformations
obtained in this case are slightly more native-like, displaying
a RMSD to the native conformation of 0.43 £+ 0.13 nm for
ACBP and 0.62 = 0.07 nm for CI2. In order to compare the
set of TS conformations obtained from folding and from un-
folding trajectories, we have calculated the average pairwise
RMSD of conformations across the two sets, which is 0.81
=4 0.10 nm for ACBP and 0.76 % 0.13 nm for CI2.

The average similarity between the folding and the un-
folding TS is compatible, within the error bars, to the intrinsic
heterogeneity of each set (their difference is 0.05¢0 in the case
of ACBP and 0 in the case of CI2), and so guarantees that the
two TS can be regarded as approximatively identical.

FIG. 10. The conformations corresponding to the transition state of ACBP (a) and CI2 (b) from the explicit-solvent ratcheted simulations. The thickness of the

surface indicates the standard deviation associated to the average structure.
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VIl. CONCLUSIONS

The complexity of the characterisation of biomolecular
processes is driving a continuos improvement of the experi-
mental and the computational techniques.’’ In particular, in
the field of computer simulations, in the last few years we
have observed a leap in the accessible time scale of plain MD
simulations. Nonetheless, even these major improvements are
not able to address the complexity of folding problem for re-
alistic proteins.® This points to the necessity of carrying on
with the development of both simplified model and advanced
sampling methods. The present work further validates the use
of the ratcheting algorithm in the study of protein folding and
extends its use to the approximate identification, at an atomic
level, of the transition state ensemble of a protein in explicit
solvent.

Specifically, protein folding simulated by the ratcheting
algorithm display the same sequence of contacts formation of
unbiased simulations, generating trajectories that are “paral-
lel” in conformational space to the unbiased ones, display-
ing a small shift in the direction of the ratcheting coordinate.
The algorithm is also able to provide, at no additional cost, a
good approximation (within an RMSD of few Angstrom) of
the structure of the protein in the transition state. The puta-
tive transition state identified by the ratchet is slightly shifted
high in energy with respect to the actual transition state, in the
direction perpendicular to the main folding path.

The above results have been obtained with a simplified
model and ratcheting along what seems a good reaction coor-
dinate for this specific system, namely the fraction of native
contacts. Our results suggest that worsening the quality of the
ratcheting coordinate makes less efficient the generation of
folding trajectories (many of the get stuck in denatured con-
formations), but does not affect consistently the identification
of the folding sequence of events and of the transition state.

The ratcheting algorithm allows to generate efficiently
folding simulations even in the case of explicit-solvent mod-
els. In this case, due to the complexity of the system, it is less
obvious that the fraction of native contacts is a good reaction
coordinate. Nonetheless, it allows to generate folding trajec-
tories of small-size proteins in few days of calculations on a
desktop computer, and to identify a putative transition state.
Of course, it is not trivial to validate this transition state by a
commitment analysis. Anyhow, the similarity between the TS
found along folding and unfolding trajectories gives an indi-
rect argument for the validity of the method also in this case.
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