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A lattice model of proteins is introduced. “A protein molscule” is a chain of non- 
intersecting units of a given length on the two-dimensional square lattice. The copoly- 
meric character of protein molecules is incorporated into the model in the form of 
specificities of inter-unit interactions. This model proved most efective for studying the 
statistical mechanical characteristics of protein folding, unfolding and fluctuations. 
The specifcities of inter-unit interactions are shown to be the primary factors re- 
sponsible for the all-or-none type transition from native to denatured states ofglobular 
proteins. The model has been studied by the Monte Carlo method of Metropolis et al., 
which is now shown applied to approximately simulating a kinetic process. In the 
strong limit of the specificity of the inter-unit interaction the native conjormation 
was reached in this method by starting from an extended conformation. The possible 
generalization and application of this method for finding the natice coilformation of 
proteins from their amino acid sequence are discussed. 

This is the first paper in a series devoted to the 
study of the conformational properties of proteins 
from the statistical mechanical point of view. In 
this series we focus attention specifically on 
conformational fluctuations of globular proteins 
in the native state and on the processes of folding 
and unfolding. We would like to justify such a 
statistical mechanical study by two significant 
possibilities. Firstly, conformational fluctuations 
in the native state are expected to be important 
for the understanding of the functions of proteins. 
Secondly, it may help to find a way to develop an 
algorithm for predicting the three-dimensional 
structure of proteins from their amino acid se- 
quence, this is a problem of the most fundamental 
biological significance and a theoretical challenge. 
The basic strategy tried so far has been to mini- 
mize the conformational energy and to locate the 
global minimum as the native conformation. 
However, this strategy did not work because of 

the enormous number of local minima. Because of 
this we decided to study the real process of folding 
from denatured to native conformation. Folding 
and unfolding are processes of a statistical mech- 
anical nature. 

From the viewpoint of statistical mechanics, 
proteins are three-dimensional, inhomogeneous 
(or non-repetitive) finite chain systems. The 
specificity of the native conformation of proteins, 
or their ability to assume unique conformations in 
their native states, is a striking aspect of such 
systems. It was shown in the previous paper ( I )  
that the globularity and specificity of the native 
conformations of proteins were the essential 
factors determining the statistical mechanical 
properties of the conformations of proteins (e.g. 
the fluctuations and transitions). The specificity 
of the native conformations of proteins was treated 
as a given phenomenological fact and its in- 
fluence on the character of the conformational 
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transition was discussed. In  this paper the speci- 
ficity is treated, not as a given fact, but as deriving 
from the heterogeneity of the amino acid sequence 
of a protein. 

In order to study the statistical mechanical 
properties of denaturation and conformational 
fluctuations of proteins and to understand the 
mechanism of realization of specificity of native 
conformations of proteins, we introduce a lattice 
model of proteins into which heterogeneous 
aspects in the amino acid sequence are incorpor- 
ated. In statistical mechanical treatments of 
polymers in general, inter-unit interactions are 
conceptually divided into short-range and long- 
range interactions. Interactions between units that 
are separated far along the chain are defined to be 
long-range, even when the units are not widely 
separated in space. This division of the interactions 
into short-range and long-range ones is important 
also in theoretical treatments of protein confor- 
mations. Existence of the correlations between 
short-range amino acid sequence and secondary 
structures (e.g., a-helix, 8-structure and 8-turn) in 
globular proteins has been shown recently by 
many authors. This indicates that the short-range 
interactions have considerable importance in the 
process of folding, even though it is apparent that 
the long-range interactions have their own role in 
determining and stabilizing the native conforma- 
tion of proteins. This role of the long-range inter- 
action has not yet been sufficiently studied 
theoretically because of the theoretical difficulties 
intrinsic in the long-range interactions. Differen- 
ces in amino acids manifest themselves in hetero- 
geneities in both the short-range and long-range 
interactions. In this paper emphasis is placed on 
the role of the long-range interactions. The short- 
range interactions are not discussed. The hetero- 
geneity of the long range interactions is taken into 
the lattice model by a very idealized form of the 
specificity of inter-unit interactions, i.e. attractive 
interactions are assumed to work for a set of 
specifically preassigned pairs of units occupying 
the nearest neighbor lattice points. In section I. 
the model is described. Even though abstracted 
and simplified, the model is still far from being 
amenable to analytical treatment. In this paper 
the model is studied by the Monte Carlo simula- 
tion method of Metropolis et al. (2). The method 
of Monte Carlo calculation is described in section 
11. In section 111, the results of the simulations are 

presented and discussed. The purpose of abstract- 
ing protein molecules as a lattice polymer is to 
enable otherwise complex phenomena to be 
studied in at; pure and simple a form as possible. 
Because of the simplification and idealization, 
some of the conformational properties of proteins 
become lucillly understandable. However, this is 
achieved by discarding some of the important 
aspects of rcal proteins. The discussion of these 
aspects is also included in section 111. In section 
IV brief conclusions and the outlook for further 
studies are given. 

I. DESCRIPTION OF THE MODEL 

In this paper we are considering a lattice polymer 
on the two-dimensional square lattice. A study 
on a lattice polymer on the three-dimensional 
cubic lattice is now in process and will be prezented 
in a future paper. The polymeric chain on the 
lattice is arisumed to be self-avoiding due to 
repulsive in:eractions between two units within 
the contact distance. The heterogeneity in the 
amino acid sequence is incorporated as the speci- 
ficity of intcr-unit interactions. Attractive inter- 
actions are assumed to work only for a set of 
preassigned pairs of units occupying the nearest 
neighbor lattice points. Such pairs of units are 
defined as being interactable and are indicated by 
filled (black) squares in Fig. 1. A pair of units 
remains unfilled (white), i.e. the pair is not inter- 
actable, when no interaction works between them 
even if the pair occupies the nearest neighbor 
lattice points. Thus Figs. IA,  B and C represent 
the inter-unit interactions with the three different 
types of specificity, respectively. 

The distrisution of interactable pairs in Fig. 1A 
is determined as follows. First the native confor- 
mation of .i protein consisting of 49 units is 
assumed on the square lattice as in Fig. 2. All 
pairs of units occupying the nearest neighbor 
lattice points in the conformation of Fig. 2 are 
filled black iind all other pairs are unfilled in Fig. 
1A. The energy of inter-unit interaction is as- 
sumed to be identical for all interacting pairs with 
a value of - 8  in this paper. Therefore the con- 
formational energy of this protein molecule is 
measured in the unit of ( - 8 ) .  Since all neigh- 
boring pairs in Fig. 2 are interacting for specificity 
A specified by Fig. lA, the conformational 
energy of the conformation of Fig. 2 is -368 for 
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FIGURE 1 
Specificity of inter-unit interactions. Attractive interaction is assumed to work when a filled (black or shaded) 
pair of units occupy the nearest neighbor lattice points. A: strong limit specificity, B: intermediate specificity, 
C: weak limit specificity. 

this specificity of interaction. It is evident that any 
conformations other than those shown in Fig. 2 
(and its mirror image) have conformational 
energies higher than - 3 6 ~  for this specificity. 
Therefore for specificity A, the native conforma- 
tion, i.e. the conformation with the global mini- 
mum energy, is that given in Fig. 2. (No distinc- 
tion will be made between a conformation and 
its mirror image in this paper.) 

In Fig. 1C all 552 pairs of units separated by 
(2n + 1) bonds (n 3 1) are filled black, i.e. attrac- 
tive interaction works nonspecifically for any pair 
of units occupying the nearest neighbor lattice 
points. No other pairs of units can occupy the 
nearest neighbor lattice points due to geometrical 
reasons. Because no specificity exists, the case of 
Fig. 1C is reduced to a homogeneous non- 
intersecting chain polymer with short-range 

447 



HIROSHI TAKETOMI, YUZO UEDA A N D  NOBUHIRO GS) 

-36 
FIGURE 2 
Native conformation of “a protein” on a two- 
dimensional lattice. 

attractive interaction. There is no unique confor- 
mation with the global minimum energy. In fact, 
any conformations packed compactly into a 7 x 7 
square, not only the conformation of Fig. 2 but 
also any of the conformations like those in Fig. 3, 
have the global minimum energy - 3 6 ~ .  For the 
specificity specified in Fig. 1C (i.e. no specificity), 

the chain polymer should have a tendency to as- 
sume compaci. globular forms at low temperatures, 
but there is no unique native conformation even 
at the low temperature limit. 

The two cases in Figs. 1 A and C can be regarded 
as the limits (of the strongest and weakest speci- 
ficities, respectively. It is possible to consider 
cases of intermediate specificities. Fig. 1 B offers 
one such example. The specificity of Fig. 1B is 
determined as follows. All 36 interactable pairs of 
units in Fig. 1A remain interactable in Fig. 1 B. In 
addition to them, randomly selected pairs of units 
are taken to 3e interactable, increasing the total 
number of interactable pairs of units to 184; 
exactly one-third of the 552 interactable pairs in 
the case of the weakest specificity in Fig. 1C. For 
this specificit) B the conformational energy of the 
conformation in Fig. 2 is - 3 6 ~ ,  since all inter- 
actable pairs in Fig. 1 A are retained in Fig. 1 B. 
However, other compact conformations in Fig. 3 
have higher conformational energies of - lot, 
- 128 and - 1 3 ~  from left to right, respectively. An 
arbitrary compact conformation in 7 x 7 square is 
expected to have an average conformational 
energy of - l:k, because one-third of all pairs are 
assigned as interactable in this specificity. There- 
fore, of all the compact conformations, the one in 
Fig. 2 has distinctly low conformational energy, 
indicating tha: at sufficiently low temperatures, the 
conformation of Fig. 2 should be the unique one 
except in a very improbable accidental case. 

The intrami~lecular interactions in real proteins 
are conceptually classified into the long-range and 

FIGURE 3 
Examples of arbitrary compact conformations other than the native one. Each unit is assigned either a letter 
of the alphabet or a symbol (*). The same letter of the alphabet is given t o  a pair of units which are interactable 
in specificity A. This facilitates observing which pairs are interacting in an arbitrary conformation, e.g. in 
conformations in Fig. 12, a pair of units occupying the nearest neighbor points is not interacting when the 
pair of units does not bear the same letter of the alphabet. 
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short-range interactions as discussed in Intro- 
duction. The long-range interactions are rep- 
resented in the latticemodel by the inter-unit inter- 
actions so far discussed. The short-range inter- 
actions in real proteins endow each amino acid 
residue with a tendency to assume an intrinsically 
preferred backbone conformation. A possible 
representation in the lattice model of such short- 
range interactions is as follows. We define a 
“bond angle” of the i-th unit in the lattice model 
as an angle between “bonds” connecting units 
(i-1) and i, and i and (i + 1). The bond angle as- 
sumes one of the three values 0” and 490” in the 
model of a two-dimensional square lattice. We 
define an intrinsic bond angle of the i-th unit as 
the bond angle realized in the native conforma- 
tion. The short-range interaction can be in- 
corporated into the lattice model by assigning 
conformational energies which depend on the 
bond angles in such a way that the energy is lower 
for angles assuming the intrinsic value than for 
angles assuming a non-intrinsic value. In the pre- 
sent paper, however, we focus attention on the 
long-range interactions. The short-range inter- 
actions are not discussed in this paper. 

The purpose of the present paper is, as described 
in the Introduction, to study the statistical 
mechanical structure of conformational transi- 
tions and fluctuations. In the cases of specificities 
shown in Figs. 1A and B, the nativeconformations 
are expected to be unique. The case of Fig. 1A 
appears to be somewhat artificial as a model of 
proteins, as attractive interactions are assumed 
only for the pairs which are interactable in the 
native conformation. In this respect, the case of 
Fig. 1B looks more natural. By studying the three 
cases of different specificities in Figs. IA,  B and 
C, we should be able to find the influences that 
specificities of interaction have on the statistical 
mechanical mechanisms of conformational tran- 
sitions and fluctuations of a chain polymer which 
assumes a specific and globular conformation in 
the native state. 

11. THE METHOD OF COMPUTER ANALYSIS 

Because the model is not amenable to analytical 
treatments, the model has been studied by the 
Monte Carlo simulation method of Metropolis 
et al. (2) The method consists in constructing a 
Markov process of conformational transitions so 

that in the stationary state an individual con- 
formational state has the probability of occur- 
rence proportional to that determined by the 
Boltzmann law. The transition probability piJ 
of the Markov process from conformational 
state i to conformational state j is determined by 
(a) the a priori transition probability pp, from 
state i to state j, and (b) conformational energies 
El and Ej of state i and state j, respectively. The 
a priori transition probabilities satisfy .the con- 
dition of detailed balance, 

PP, = PpI 

i.e. the a priori transition probability from state j 
to state i is equal to that from state i to state j. The 
transition probability is then given by 

It is demonstrated in ref. (2) that in the stationary 
state of the Markov process defined by equation 
2 an individual state has the probability of 
occurrence proportional to that determined by 
the Boltzmann law. The temperature comes into 
the model through equation 2. The temperature 
will be measured hereafter in the unit of c/k and 
designated by T*. The conformational energy El 
of state i is given by - mle, where mi is the number 
of interactable pairs occupying the nearest 
neighbor lattice points. 

The Monte Carlo method of Metropolis et al. 
was originally devised as a modified Monte 
Carlo integration over configuration space SO 

that the equilibrium values of physical quantities 
could be evaluated for a system undergoing phase 
transitions. If the transition probabilities are 
chosen properly, however, this method can be 
applied to simulate approximately the time course 
of a system behaving stochastically. If the rate 
constant for a system to change from state i to 
state j is klJ, a stochastic model of the kinetic 
behavior of the system can be defined by assigning 
klJAt for a transition probability piJ(At) from 
state i to state j in time interval At. A stochastic 
model of discrete time can be defined by choosing 
such a small time interval At as the unit time 
length during which the transition of state takes 
place once at the most. In this discrete-time 
stochastic model the transition probability plJ(At) 
is very small, and satisfies the relation 
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The probability pll(At) of staying in state i during 
the time interual At is given by 

which is very close to unity, i.e. the transition is 
quite seldom. The course of simulation calculation 
can be interpreted exactly as a kinetic process. The 
calculation, however, requires long computing 
time, because transitions are quite seldom. Com- 
puting time can be reduced by taking long At, so 
that the transition probabilities proportionally 
become larger, although the length of the unit 
time At is limited due to the transition taking 
place once at the most in the interval. The tran- 
sition probabilities, which still satisfy equation 3, 
are determined by the method of Metropolis et al. 
so that transitions take place reasonably fast in 
computer calculation. Thus, in the method a 
short unit time length At is not taken, yet 
transition is assumed to take place once at the 
most, i.e. the probabilities of more than one 
transition taking place in the unit time length are 
discounted. This is the approximation involved in 
the kinetic interpretation of the method of 
Metropolis et al. Except for this approximation, 
the course of simulation calculation can be 
interpreted kinetically, if the transition probabili- 
ties are taken realistically. For this purpose the a 
priori probability pyJ,which is equal to (pij~ji)~’’ 
exp(lEl -EJI/2kT), should be taken as close to 
(kiJkJl)1/2eXP(1El -E,(/2kT)At as possible. This is 
the reason why higher a priori probabilities are 
assigned in this paper to easier movements (as 
described in the next paragraph). These consider- 
ations led us to regard the course of simulations 
calculation approximately as a kinetic process; in 
other words, trial numbers in Figs. 6 and 1 1, can 
be regarded as the quantities equivalent to time. 

The a priori transition probability py, is deter- 
mined as follows. The a priori transition proba- 
bility ppJ has a non-vanishing value only when the 
transition from state i to state j is attained by one 
of the elementary conformational changes. Fig. 4 
illustrates the five types of elementary changes; 
(1) non-local rotation, (2) non-local translation, 
(3) local translation a, (4) local translation b and 
( 5 )  local translation c. One unit in each is filled in 
Fig. 4. If this is jlh unit in the chain, each of the 

1. Non-Local Rotation 
n 

0- - oy 
2. Non-Local Translation 

3. Local Translation (a) 

4 .  Local Translation (b) 

5. Local Translation (c) 

FIGURE 4 
Five types of elementary conformational changes. 
Each of the changes takes place at the filled unit in 
order to distinguish from the same type of change 
taking place at different units in the chain. 

conformational changes are said to be taking 
place at jtb unit. The flow chart of the actual 
computational procedure is shown in Fig. 5 .  The 
conformational changes of types 1 through 5 are 
chosen randomly with the probabilities of lo%, 
25%, 26%, 21% and 18%, respectively. A unit 
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I Set UD i-th conformational state I 
1 

Choose the type of conformational change+ 
c 

Select a unit at which the conformational 
change takes place + 

Does a local conformation around th 
selected unit allow the chosen type 

of conformational change? 

no Yes 
I Perform the conformational change] 

v . . d  Determine if the transition to 
the state is real according to 

equation (2) of the text 
virtual 

thstatei(i+ 1)-th state] Lfhe new state+(i+ 1)-th state 

FIGURE 5 
Flow chart of the actual computational procedure. 

undergoing one of the three types of local conform- 
ation al changes is selected randomly with uniform 
probabilities from all units. For the two types of 
non-local conformational changes, the probability 
of choice is increased toward both ends of a chain 
showing that a change could occur more easily 
when an involved moving part has a smaller 
moment of inertia. The probability thus assigned 
determines the a priori probability that a confor- 
mational change of chosen type takes place at a 
chosen unit, provided (a) that such a conforma- 
tional change can actually occur at the chosen 
unit [e.g. the conformational change of type 3 can 
not occur at ra unit whose “bond angle” is O”] 
and (b) that there is no steric overlap in a confor- 
mation resulting from the conformational change. 
It is apparent that the a priori probabilities thus 
determined satisfy the condition of detailed 
balance. 

111. RESULTS AND DISCUSSION 

Fig. 6 shows the time course of conformational 
changes starting from the native conformation of 
Fig. 2 in the cases of the interaction specificities 

A and C for various temperatures. The abscissa is 
the number of trials of conformational changes 
which can be approximately regarded as time as 
described in section 11. The ordinate indicates 
the degree of the order of the system which is 
represented by the number m of attractive inter- 
actions in a given conformation. In the case of 
specificity C, after relaxation to the equilibrium 
state, m fluctuates around a mean value < m >, 
which decreases gradually as the temperature is 
raised. In the case of specificity A, the chain 
polymer remains fluctuating about the native 
state at low temperatures, with the amplitude of 
fluctuation getting larger as the temperature is 
raised to melting point. As the temperature 
approaches melting point, the chain polymer at 
first remains fluctuating about the native state 
for a while and then suddenly loses the order to 
become the denatured state. At temperatures near 
melting point, the once denatured polymer suffers 
a sudden large-scale fluctuation, and returns to 
the native state (T* = 0.85 in Fig. 6A). As the 
temperature is raised beyond melting point, the 
once denatured polymer remains fluctuating at 
the denatured state (T* = 1.2 in Fig. 6A). An 
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FIGURE 6 
Courses of conformational changes starting from the native conformation of Fig. 2 in cmes A and C at various 
temperatures. 

effect of the interaction specificity is clearly seen 
from the qualitative differences of the curves for 
cases A and C in Fig. 6. 
By averaging the curves of Fig. 6 for a large 

number of trials, we can get an equilibrium value 
of 0 defined by < m > /mmax at each temperature, 
where mmax is the maximum number of inter- 
actable pairs, i.e. mm.. = 36 in the present model. 
The equilibrium denaturation curves (i.e. 0 versus 
T curves) are shown in Figs. 7A, B and C for the 
cases of specificities A, B and C, respectively. It is 
clearly seen that the transition becomes sharper as 
the interaction becomes more specific. However, 

such a basic character of the transition, as to 
whether or not it is of the all-or-none type, & h o t  
be deduced from the transition curves in Figs. 7A, 
B and C alone. In order to elucidate such a prob- 
lem, the population distribution in equilibrium is 
plotted in Fig. 8 for two temperatures near the 
transition temperature in the case of specificity A. 
At both temperatures the distribution has two 
peaks, one at ITI = 36 (native state) and the other 
at m 2 0  (denafured state). Therefore by defini- 
tion (1) the transition is of the all-or-none type. As 
was demonstrated in ref. ( l ) ,  the character of the 
conformational transition can be fully described 
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by S-H curves, which can be constructed from 
population distributions like those in Fig. 8. S-H 
curves constructed from computed data are shown 
in Figs. 9A, B and C for the three cases of specifi- 
cities A, B and C, respectively. The curve of Fig. 
9A is the same type as in Fig. 1 in ref. (1) and is 
concave in the full range of H, indicating that the 

transition takes place in the all-or-none manner 
from state N to state D. The curve of Fig. 9C is 
the same type as in Fig. 3 in ref. (1) and is convex 
in the full range of H, showing that the transition 
is of the graded type as illustrated in Fig. 4 in ref. 
(1). These two curves clearly and quantitatively 
indicate the effect of the specificity of inter-unit 

0.5 1.0 15 2.0 - 
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FIGURE 
Population profiles near the 
transition temperature in case 
A, indicating that the transi- 

interactions on the statistical mechanical charac- 
ter of the transition. The case C of no specificity 
of inter-unit interactions can be regarded as the 
two-dimensional version of the three-dimensional 
lattice polymer with non-specific inter-unit inter- 
actions for the nearest neighbor units studied by 
Kron et al. (3). They also observed a globule- 
random coil transition of the graded type. Figs. 
9A and C clearly demonstrate that an essential 
factor rendering the transition to be of the all- 
or-none type is the specificity of the inter-unit 
interactions. The curve of Fig. 9B for the inter- 
mediate specificity is the same type as the dotted 
line in Fig. 7 in ref. (1). A thermal conformational 
transition of the all-or-none type takes place at  
first from state N to state about H = - 13e. Then 
as the temperature is raised further, the peak 
position of the denatured state shifts gradually 
from H = -13e to H = 0. This case B probably 
simulates real globular proteins best out of the 
three cases of specificity studied in this paper. 

The character of the transition is also reflected 
in the specific heat of the system near melting 
point. The specific heat, determined by energy 
fluctuation of the system, is given by 

( 5 )  
C - = ~ ( m - < m > ) ~ > / T * ~  
k 

where < - . .  > is the long-time average in the 
equilibrium state. The computed data are shown 
in Figs. IOA, B and C for the three cases of 
specificities A, B and C, respectively. Sharp 
peaks of the specific heat at melting point are 

rn (0) tion is of the all-or-none type. 

observed in csises A and B, where the conforma- 
tional transition from native to denatured states is 
of the all-or-none type. In case C, where the 
transition is of the graded type, there is no sharp 
peak. The shoulder appearing at the high temper- 
ature side of the peak in case B corresponds to the 
process of the gradual shift of the peak position in 
the denatured state. In this way the specific heat 
reflects a rather detailed process of the transition. 

The time course of conformational changes 
starting froa. a denatured conformation is 
shown in Fig. I1 in the cases of specificities A and 
B for various temperatures. Most striking is the 
fact that in case A the specific native conforma- 
tion is reached at  low temperatures where the nat- 
ive conformation is stable. This result is important 
in two respects. One is that the Monte Carlo 
method employed in this paper is most effective 
for finding the native conformation of proteins. 
The other is that the system is assured of reaching 
the equilibrium state. These two aspects are 
discussed in turn in the following. 

Predicting specific conformations of proteins 
from their amino acid sequences is undoubtedly 
one of the ultimate goals of protein research. So 
far, the method of minimization of conformational 
energy has been investigated for this purpose (4). 
It has become clear that this method involves the 
essential difficulty of multiple minima. A power- 
ful algorithm must be found to overcome this 
difficulty and to find the global minimum on the 
multi-dimensio nal conformational energy surface. 
The Monte Ciirlo method of Metropolis et al. 
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FIGURE 9 
S-H curves for the three cases of specificity A, B and C. 
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of the system versus temperature T* for the three cases of specificity A, B and C. 

appears to be a very hopeful one, since it has now 
been successfully applied to find the native con- 
formation for the lattice model of proteins, no 
matter how simplified the model may be. As 
described in section I1 this method simulates the 
kinetic process fairly faithfully, implying that the 
application of the method may be understood to 
simulate the actual kinetic process of renaturation 
on the computer. It is interesting that the method 
simulating the real kinetic process is actually 
found to be effective. Fig. 12 shows several 
representative conformations in the course of 
renaturation in the case of A for T* = 0.4. 

Many details about the processes of renaturation 
have not beer, discussed in this paper. However, 
it should be nressed that the study of conforma- 
tions in the process of renaturation as shown in 
Fig. 12 can shed light on the role of nucleations 
etc. 

The successful regeneration of the native con- 
formation in the strong limit case of specificity A 
is interesting also from the point of view of 
assessing the r d e  of the long-range interactions in 
the process csf folding. Because of the recent 
recognition of the correlations between short- 
range amino s.cid sequence and secondary struc- 
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FIGURE 11 
Courses of conformational changes starting from a denatured conformation in cases A and B for various 
temperatures. 

tures, it is currently believed that the short-range 
interactions play an important role in the folding 
process. However, the present observation indi- 
cates that the role of the short-range interactions 
is to be assessed only in relation to the role of the 
long-range interactions, because regeneration of 
the native conformation was possible in the model 
only with long-range interactions. 

On the other hand, Fig. I 1  also indicates that 
the Monte Carlo method employed in this paper 
is not successful for finding the native conforma- 
tion in the more realistic case of intermediate 
specificity B. This observation indicates that the 
effectiveness of the Monte Carlo method is not 
independent of the intramolecular interactions. At 
present we do  not consider the impossibility of 
regenerating the native conformation in the case 
of specificity B as an indication of the inadequacy 
of the Monte Carlo method; instead we regard it 

as an indication of the inadequacy of the intra- 
molecular interactions in the model. We are 
trying to incorporate a new feature into the model 
whereby the renaturation to the native confor- 
mation is facilitated. One possibility is the in- 
corporation of the short-range interaction dis- 
cussed in section I. 

The basic theory of the Monte Carlo method of 
Metropolis et a!. assures that the long-time 
average converges to the equilibrium value. Time 
is said to be long or short in comparison with the 
relaxation times of the system. Relaxation times 
are, in general, not known beforehand. This 
creates an inherent ambiguity in the simulation 
method of phenomena involving a phase transi- 
tion or a phase-transition-like change, where 
relaxation times become very long. It is difficult 
to exclude all ambiguities from the interpretation 
of data of simulations, especially at or near the 
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transition point. In the case of specificity A, where 
renaturation to the native conformation does 
actually take place at low temperatures, the 
equilibrium state appears to be reached within the 
trial numbers shown in Figs. 6 and 11. In other 
words, the relaxation time is not very long in the 
strong limit case of specificity A. In the weak 
limit case of specificity C, where the transition is 
of the graded type, the relaxation time is not very 
long, either. In the intermediate specificity B the 
relaxation time appears to be very long. In this 
case the protein remains fluctuating about the 
native conformation up to T* = 0.7, when 
started from the native conformation. A sudden 
denaturation takes place as the temperature is 
raised to T* = 0.725. These observations indicate 

renaturation in the case of A 
for T* = 0.4. 

that the naiive state is stable up to about T* = 
0.7. When started from an extended conformation 
(chosen frcm conformations in the denatured 
state), the renaturation to the native conformation 
is not observed at temperatures below T* =0.7 
within the trial numbers tried in Fig. 11. The 
chain polymer is trapped in a state which appar- 
ently corresponds to a local minimum on the 
conformational energy surface. The trapped 
states, which do not represent the equilibrium 
state, are lot included in Figs. 7B and 10B. 
Further study is now under way, based on the 
view that these trappings do not occur in real 
protein due to factors not yet incorporated in the 
model of specificity B. 

The study in this series of papers has three 
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features; (a) a model of proteins, (b) a method 
which allows the model to move in simulation of 
the kinetic processes of proteins, and (c) to reveal 
the mechanism of the kinetic processes by apply- 
ing (b) to (a). In these terms the purpose of this 
series of papers can be re-stated as follows. To 
construct a model with essential factors in as 
simple a form as possible, and to develop a method 
by which the kinetic behavior of the model can be 
studied so that the essence of the statistical 
mechanical properties of conformations of 
proteins, especially folding, unfolding and fluctua- 
tions, ca’1 be understood. There is a deficiency 
between the present lattice model and real 
proteins, especially in the way the heterogeneity 
of the amino acid sequence is expressed by the 
specificity of inter-unit interactions. Thus, the 
findings in this paper can not yet be utilized 
directly to predict the native conformation of 
proteins from the amino acid sequence. However, 
in this series of papers we hope to reveal which 
aspects of real proteins are essential for the process 
of folding and thus can be used in the algorithm 
for predicting the native conformation. 

IV. CONCLUSIONS 

A lattice model of proteins with specific inter-unit 
interactions was shown to provide a good and 
effective method for studying the statistical 
mechanical properties of conformations of 
globular proteins. Three cases of the specificities 
A, B and C, specifying the inter-unit interactions 
of strong limit, intermediate, and weak limit, 
respectively, were studied. In the cases of the 
strong limit and intermediate specificities, de- 
naturations were found to be of the all-or-none 
type, while in the case of the weak limit specificity, 
denaturation was found to be of the graded type. 
It thus follows that the specificity of inter-unit 
interactions reflecting the inhomogeneity in the 
amino acid sequence is essential for the all-or- 
none character of the denaturation of globular 
proteins. The lattice model is also expected to be 
effective for elucidating fluctuations in native and 
denatured state and the detailed processes of 
denaturation and renaturation. The lattice model 
was studied by the Monte Carlo method of 

Metropolis et al. This method was able to approx- 
imately simulate a kinetic process. In the strong 
limit case of specificity A renaturation to the native 
conformation was observed actually to take place, 
indicating the effectiveness of the Monte Carlo 
method for predicting the native conformations of 
globular proteins. In the intermediate case of 
specificity B, a more realistic case than A, 
renaturation to the native conformation was 
hindered, because the conformational state was 
trapped in a local minimum on the conformational 
energy surface. Incorporation of new features 
into case B such as emphasized short-range 
interactions, and so forth, is currently being tried 
to see if such a change in the model can help 
realize the renaturation to the native conforma- 
tion. 
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