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Abstract

It has become commonplace to employ principal component analysis to reveal the most important 

motions in proteins. This method is more commonly known by its acronym, PCA. While most 

popular molecular dynamics packages inevitably provide PCA tools to analyze protein 

trajectories, researchers often make inferences of their results without having insight into how to 

make interpretations, and they are often unaware of limitations and generalizations of such 

analysis. Here we review best practices for applying standard PCA, describe useful variants, 

discuss why one may wish to make comparison studies, and describe a set of metrics that make 

comparisons possible. In practice, one will be forced to make inferences about the essential 

dynamics of a protein without having the desired amount of samples. Therefore, considerable time 

is spent on describing how to judge the significance of results, highlighting pitfalls. The topic of 

PCA is reviewed from the perspective of many practical considerations, and useful recipes are 

provided.
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1 Introduction

Protein dynamics is manifested as a change in molecular structure, or conformation as a 

function of time. To describe accessible motions over a broad range of time scales and 

spatial scales, protein conformations are best represented by a vector space that spans a large 

number of dimensions equal to the number of degrees of freedom (DOF) selected to 

characterize the motions. Many molecular simulation techniques are available to generate 

trajectories to sample the accessible conformational ensemble characterized by those DOF. 

The interpretation of a trajectory can lead to better understanding of how proteins perform 

biological functions. To this end, the process of extracting information from sampled 

conformations over a trajectory, and checking whether the sampling is a robust 

representation of an ensemble of conformations accessible to the protein, are tasks well 

suited for statistical analysis. In particular, Principal Component Analysis (PCA) is a 

multivariate statistical technique (see Note 1) applied to systematically reduce the number of 

dimensions needed to describe protein dynamics through a decomposition process that filters 

observed motions from the largest to smallest spatial scales [1–5]. PCA is a linear transform 
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that extracts the most important elements in the data using a covariance matrix or a 

correlation matrix (normalized PCA) constructed from atomic coordinates that describe the 

accessible DOF of the protein, such as the Cartesian coordinates that define atomic 

displacements in each conformation comprising a trajectory [6]. When all of the atomic 

displacements have similar standard deviations, a covariance matrix is typically used; 

otherwise it is prudent to employ the correlation matrix, which normalizes the variables to 

prevent rare but large atomic displacements from skewing the results. In constructing the 

covariance matrix or correlation matrix (henceforth C-matrix will be generically used for 

either matrix type), it is often assumed that the amount of sampling is sufficient, but this 

always requires many more observations than the number of DOF (variables) used in the 

matrix. An eigenvalue decomposition (EVD) of the C-matrix leads to a complete set of 

orthogonal collective modes (eigenvectors), each with a corresponding eigenvalue 

(variance) that characterizes a portion of the motion, where larger eigenvalues describe 

motions on larger spatial scales (see Note 2). When the original (centered) data is projected 

onto an eigenvector, the result is called a principal component (PC).

While PCA can be performed on any high dimensional dataset, for the analysis of a protein 

trajectory, a C-matrix associated with a selected set of atomic positions must be constructed. 

Often, a coarse grained description of the protein motion is made at the residue level by 

using the alpha carbon atom as a representative point for the position of a residue. In this 

case, the C-matrix will be a 3m × 3m real, symmetric matrix, where m is the number of 

residues. Performing an EVD results in 3m eigenvectors (modes) and 3m − 6 non-zero 

corresponding eigenvalues, provided that at least 3m observations are used. When the 

eigenvalues are plotted against mode index that are presorted from highest to lowest 

variance, a “scree plot” typically appears as a function of mode index. When such a scree 

plot forms, a large portion of the protein motions can be captured with a remarkably small 

number of modes that define a low dimensional subspace. The top set of modes typically has 

a higher degree of collectivity [7], meaning the PCA modes have many appreciable 

components distributed quite uniformly. Conversely, a low degree of collectivity indicates 

there are a small number of appreciable components, although they are not necessarily tied 

to a localized region of space. When analyzing proteins, 20 modes are usually more than 

enough (even for large proteins) to define an “essential space” that captures the motions 

governing biological function, thus achieving a tremendous reduction of dimension.

The process of applying PCA to a protein trajectory is called Essential Dynamics (ED) since 

the “essential” motions are extracted from the set of sampled conformations [8–10]. Of 

course, a linear combination of the 3m orthogonal PCA modes can be used to describe exact 

protein motions (at the selected coarse grained level). In practice, the presence of large-scale 

motions makes it difficult or impossible to resolve small-scale motions because the former 

has much greater relative amplitude in atomic displacements. Indeed, it is for this reason that 

1Many statistical packages support PCA and factor analysis (FA). While both methods use EVD, what is being factored is not the 
same. In PCA there is no underlying model for interpreting the “factors”, and second, PCA does not account for error in the 
measurements, and thus if using the correlation matrix, it places all ones on the diagonal unlike FA, which places the communalities 
on the diagonal.
2Here we refer to the spectral decomposition of a matrix as an eigenvalue decomposition (EVD). With square symmetric matrices 
there is no need to use a singular value decomposition (SVD) since the right and left vectors from the SVD are identical and the 
singular values are equal to the square root of the eigenvalues from the EVD.
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the large-scale motions are often the most biologically relevant. Therefore, only a small 

number of PCA modes having the greatest variances are used to characterize large-scale 

protein motions. When small-scale motions are of interest, the method of PCA can still be 

used successfully by applying it to sub-regions of a protein as a way to increase the 

resolution for describing the dynamics within those sub-regions.

An alternative method to quantify large-scale motions of proteins is to use a Normal Mode 

Analysis (NMA) [11, 12] derived from an Elastic Network Model (ENM) [13–15]. In the 

ENM, one typically considers nearby alpha carbon atoms to interact harmonically, where the 

connectivity is determined from a single structure to extract an elastic network. Typically, 

the large-scale motions quantified by a small set of lowest frequency modes of vibration are 

in good agreement with the same corresponding number of PCA modes when direct 

comparisons of subspaces are made [16–18]. One advantage of performing PCA to obtain 

the ED of a protein is that information from any selected set of atoms can be used to obtain 

the PCA modes associated with that subspace. While it is true that ED is often applied to the 

analysis of alpha carbons, this is not required. The spatial resolution of PCA analysis can be 

coarser than the resolution of the structures that comprise the trajectory, which, for example, 

may come from an all-atom based simulation. Another advantage of ED is that statistics 

from many trajectories may be pooled allowing a great deal of flexibility in the way data 

from different simulations can be combined. The overall large-scale motions and any 

number of selected small-scale motions can be determined in a post-simulation phase of 

research as the nature of the protein motions is being interrogated.

Perhaps the most important difference between NMA and PCA is in the assumption of 

harmonicity. The premise of NMA requires the molecular motion is confined near the local 

minimum in the free energy landscape where residues in close proximity (i.e., atomic 

packing) respond as harmonic pairwise interactions (i.e., springs). Since proteins display a 

significant amount of anharmonicity in their behavior [19, 20], this assumption is not always 

suitable [21–23]. PCA makes no assumption of harmonicity, and thus is not limited to 

harmonic motions. Indeed, because PCA is independent of the model invoked during the 

simulation to generate the trajectory, the resulting conformational changes that can be 

explored can deviate far from the harmonic assumption. On the other hand, the limitations of 

PCA stem from using a linear transform that is based on second moments (covariance), and 

the fact that subsequent factorization yields eigenvectors that are orthogonal. While a linear 

transform of the data is always possible, if the variables are not intrinsically linearly related, 

any nonlinear relationships present will not be properly described. Nonetheless, in practice, 

standard PCA is similar to the standard ENM approach. In other words, relying on 

covariance implies higher-order correlated motions related to higher moments are missed.

Nonlinear generalizations of PCA are available such as kernel PCA [24] that can be applied 

directly, or employed after the most relevant subspace is identified first using standard PCA. 

A disadvantage of kernel PCA is that the choice of kernel is not obvious because it is 

problem dependent, although we show below that some common choices work well for 

protein trajectories. Also problematic is that the reconstruction of data is difficult to interpret 

because the mapping involves feature space, which is distinctly different than 

conformational space that has a geometric interpretation despite being of high 
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dimensionality. The reason for employing kernel PCA is to differentiate conformations 

within an ensemble beyond that possible using standard PCA, which may give insight into 

structural mechanisms governing protein function. Our work suggests that the simplest PCA, 

which follows from the C-matrix, offers a validated method to describe the dominate 

correlations present in atomic motions found in proteins, and it provides an effective 

dimension reduction scheme that can be used for subsequent analysis to capture nonlinear 

(or higher order correlations) effects when they are of interest. Nevertheless, in practice it is 

always important to ensure and test the robustness of the PCA modes.

Keep in mind that individual PCA mode directions are subject to errors related to finite 

sampling of conformations to construct the empirical C-matrix. The empirical C-matrix 

should be a good estimate for the actual population C-matrix (infinite samples). In practice, 

PCA can be strongly influenced by the presence of outliers in a dataset. The main concern is 

that the outliers may skew the first few mode directions. While there are robust algorithms 

that are useful in stabilizing PCA in the presence of outliers [25–32], it is often effective to 

remove identifiable outliers or simply consider a sufficiently long trajectory for which the 

results are significant. Generating a large number of conformational samples and removal of 

outliers before the C-matrix is calculated mitigates concerns about robustness of the results. 

Moreover, this type of intrinsic error does not pose much of a problem as long as 

biologically relevant motions are described using a superposition of a small set of dominant 

modes (instead of focusing on one mode). As the mode number increases the core part of 

this subspace becomes stable against sampling noise. However, only the top several modes 

tend to be useful.

The choice of which modes to include is often made by examining the scree plot for a 

visible “kink” (the Cattell criterion) [33, 34], such that all modes up to the kink are 

important (see Note 3). Although a kink does not have to exist, it typically does in the study 

of protein dynamics. In fact, a kink will generally appear for any high dimensional dataset. 

Hence the name scree (geological debris at the bottom of a cliff) plot has been tied to PCA. 

Other criteria are commonly used for the choice of essential modes. For example, the top set 

of modes associated with greatest variances when added should reach some fraction (say 80 

%) of the total variance possible given by the trace of the C-matrix. The problem with this 

method is that some a priori set fraction is arbitrary, and for fractions greater than 50 % one 

tends to end up with many more modes than are truly relevant to the problem. The scree plot 

provides an objective criterion. Figure 1a shows the scree plots for PCA of two protein 

simulations and a random process created from independent and identically distributed 

variables. Notice there is a rapid decrease in the eigenvalues for the proteins that is not 

present in the random process.

3There are multiple criteria for choosing modes (eigenvectors) in PCA (or FA). Since no underlying model is being used, the 
“interpretability” criterion does not apply. Also, the “Eigenvalue Larger than 1” only applies when using the correlation matrix. In 
protein dynamics, we find that trying to capture a specific amount of variance, say 50 %, does not work well and often over-estimates 
the essential subspace. The Cattell criterion for mode selection tends to work best and is applied by constructing the eigenvalue scree 
plot and identifying the “kink”. Unlike with FA, there is no harm in doing this subjectively. We suggest that this approach be 
combined with subspace analysis to identify the saturation point for the RMSIP plots, as this is a good indicator of the essential 
subspace that is invariant to the “noise” in the data.
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When PCA is applied to Cartesian coordinates that describe the positions of atoms, an 

alignment step is necessary prior to the process of constructing the C-matrix because the 

intent is to capture the internal motions of a protein. The structural alignment step requires 

the center of masses to coincide as well as a global rotation to optimally align the structures. 

The authors implemented a quaternion rotation method to obtain optimal alignment defined 

by the minimum least-squares error for the displacements between corresponding atoms 

[35]. PCA is not limited to the analysis of a Cartesian coordinate-based C-matrix. Any set of 

dynamic variables that describe the protein motion can be used. For example, one may 

choose to use internal dihedral-angle coordinates such as the (Φ, Ψ) angles or interatomic 

distances, which eliminates the need to optimally align conformations. However, in the 

former case, it has been realized there is an intrinsic nonlinear effect that is not well 

described using standard PCA, suggesting kernel PCA should be employed or an alternative 

internal coordinate system that is naturally linear should be chosen. In the latter case, 

internal atomic distances offer the possibility of an all-to-all distance C-matrix for the alpha 

carbons, which has a row dimension equal to the number of structures in the trajectory and a 

column dimension equal to m(m − 1)/2, where m is the number of residues considered. A 

distance based C-matrix can be created, which is a square matrix with dimension m(m − 

1)/2, and therefore requires much more sampling. In this case, the PCA modes reveal the 

coordinated changes in distances between all residue pairs. Despite the advantage of 

working directly with internal coordinates, performing all-to-all distance PCA quickly 

becomes computationally prohibitive due to the need to diagonalize very large non-sparse 

matrices. More importantly, the interpretation of the eigenvectors becomes difficult when 

the number of residues is greater than ten. Nevertheless, this approach has proven useful 

when studying a small subset of atoms where the interpretation is clear [36, 37].

The task of applying PCA to a conformational ensemble (CE) requires that a CE be 

generated. There are multiple ways to create a CE including molecular dynamics (MD) and 

geometrical simulations such as FIRST/FRODA [38–40]. A CE may be generated by 

experimental methods such as using protein structures from X-ray crystallography or nuclear 

magnetic resonance (NMR) techniques. For certain applications it is prudent to combine 

multiple CEs together that define a single dataset. One reason for combining different CEs is 

to boost statistics, where each CE has the same characteristics. This is convenient, as the 

simplest way to apply parallel computing occurs when multiple simulations are run 

simultaneously and independently. However, the CEs that are combined could represent 

different conditions, such as different temperatures in MD simulation, fixing a different set 

of distance constraints in geometric simulation or contrasting mutant structures. Clustering 

different CEs in the subspace defined by the most relevant PCA modes provides insight into 

the effect of varying conditions. In some cases, a protein may undergo large-scale 

(anharmonic) conformational changes that bridge two distinct basins of low free energy. The 

combined CEs will allow these basins to be clearly identified, as well as the paths 

connecting them. Similarly, different CEs that represent a set of mutant structures, or apo 

and holo forms of a protein, possibly with different ligands bound, allow one to differentiate 

the conformations easily by clustering in a small dimensional subspace.
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The most appealing and intuitive way to investigate the nature of protein motions is to 

project the displacement vectors (DV) defined in the original high dimensional space that 

characterize different conformations onto a pair of PCA modes. It is even possible to project 

onto higher dimensions as one visualizes multiple PCA modes simultaneously using 

specialized software such as R or XL-STAT™, which is a plug-in for Microsoft Excel 

developed by Addinsoft™. Such plots are indispensible for assessing how well certain parts 

of the subspace are sampled, especially in comparative studies where differentiation in 

dynamics can have functional consequences. The results of such an analysis show how each 

state occupies a region of the conformational space defined by the first two PCA modes.

Given that the ED of a protein is characterized using a small vector space defined by PCA 

modes that reflect different CEs and a combined CE, it becomes necessary to benchmark 

how similar these subspaces are to one another. When subspaces are sufficiently similar, this 

implies that the different ensembles capture the same type of protein dynamics. Conversely, 

when subspaces are dissimilar, different types of motions are being captured, which may 

have biological consequences tied to the different conditions analyzed. As such, it is 

necessary to define a measure to quantify the overlap of vector subspaces, as a natural 

generalization to the concept of a projection (dot product) of one vector onto another. That 

said, note that a set of n PCA modes forms an orthogonal n dimensional subspace (SS) 

within the full vector space (VS) defined by the size of the C-matrix (see Note 4). Common 

metrics that quantify SS similarity include cumulative overlap (CO), root mean square inner 

product (RMSIP), and principal angles (PA) [12, 41–45]. The CO metric quantifies how 

well one SS is able to capture the PCA modes of the other SS. The RMSIP metric is a single 

number that quantifies the SS similarity in terms of multiple inner products between the two. 

The PA method provides a quantification of the optimal alignment between the two SS that 

is based on the singular value decomposition (SVD) of a matrix of overlaps (inner products) 

between the two SS. The result is a sorted (monotonically increasing) set of n angles, where 

n is the dimension of the compared subspaces, that quantify how well the two SS can be 

aligned.

A final concern with assessing the PCA output is the significance of the results. While PCA 

is robust when there is sufficient sampling, the questions that remain are: What constitutes 

sufficient sampling and how trustworthy are the modes? Since PCA relies on the 

factorization of the C-matrix, the condition number of the C-matrix indicates the numerical 

accuracy that can be expected within the solution of the associated set of equations. For a 

given process, more sampling reduces the condition number. Therefore, if the condition 

number for a C-matrix is high, this could be in indication there is not enough statistics. If 

possible, the number of independent samples should be at least ten times the number of 

variables. Two direct measures for sampling significance are known as the Kaiser-Meyer-

Olkin (KMO) score given as:

4Given a C-matrix that is well conditioned, most common algorithms that perform EVDs (LINPACK, JAMA, etc.) will generate a set 
of eigenvalues in increasing order and a matching set of eigenvectors. The eigenvectors are orthogonal and normalized to have a 
magnitude of 1. Thus, any set of N eigenvectors constitutes an N dimensional orthonormal subspace of the parent vector space, 
defined by the full rank of the C-matrix.
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(1)

and the associated measure of sampling adequacy (MSA) given as:

(2)

where r is the standard correlation coefficient and p is the standard partial correlation 

coefficient [46]. These statistics can take values between 0 and 1. If all the partial 

correlations are zero, then the MSA score is 1. The KMO score indicates the amount of 

partial correlations between the sampled variables and provides an indicator for when 

applying PCA is appropriate. The MSA provides a metric for each variable. KMO and MSA 

should ideally be greater than ½. It is worth noting that the MSA scores for each variable are 

related in a nontrivial way to the protein environment. Specifically, there tends to be a 

moderate negative correlation between the MSA scores and the residue RMSD.

When comparing essential subspaces, keep in mind that all of the subspace metrics 

described above depend on both the dimension of the SS and the dimension of the full VS as 

shown in Fig. 1b.

One way to assess PCA modes is to compare them to the modes of a random process to 

obtain a baseline for determining the significance of the subspace comparisons as the 

dimensions for the SS and full VS change. With these baselines, a Z-score can be calculated 

to assess the statistical significance of the scores, for example when using RMSIP:

(3)

However, the essential SS of a random process has very different characteristics than the 

essential SS constructed from a protein trajectory as Fig. 1 clearly shows. Randomly 

shuffling the indices for the components of modes produces a new set of modes that have 

essentially the same character as the modes determined by PCA on a purely random process. 

Consequently, any two same-sized proteins share much more in common than would be 

expected by a random process, making large Z-scores not very useful in practice. This is due 

to the fact that compared to a completely random process all proteins share much more 

common dynamics because they share common structural features such as a covalent 

backbone even if their fold topology is very different. What this means in practice is that any 

of the metrics described above for any two proteins will show much more overlap compared 

to a random process. In fact, using two different trajectories under the same conditions, we 

found that the scores for overlap between two identical proteins can be lower than the 

overlap between two different proteins when the number of residues is small (<100). This 

result escalates when using a coarse-grained approach that prunes many discriminating 

features (to reduce DOF). To obtain a more stringent criterion for Z-score determination, the 
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data presented strongly suggests that a comparison to other proteins, possessing the same 

number of DOF, that define a decoy set should be used to define the random baseline in (1), 

rather than a generalized random process. However, to the best of our knowledge, baselines 

from decoys have not been done.

Figure 2 shows the risks of comparisons made for small proteins using a coarse-grained 

model. For this analysis, four proteins having distinctly different folds were simulated under 

the same conditions using geometrical simulation and then subjected to PCA as a combined 

set, where only the first 75 residues were included in the covariance matrix starting from the 

N-terminus and always remaining within the N-terminal domain. Figure 2b shows the Z-

scores for the comparisons in Fig. 2a. Here it is critical to note the similarity between the 

random process and the decoy comparisons. When 1WIT is compared to itself (using 

different simulation conditions), RMSIP saturation suggests that the proper essential 

subspace dimension is nine modes. However, the random process and the decoy 

comparisons do not reach a saturation point within the first 30 modes. When working with 

larger proteins, such comparisons are much safer, as shown in Fig. 2c, d with myosin V 

(MV). The moral here is that extra care must be taken to claim significance of PCA results 

on small proteins when coarse-graining is used.

Another way to assess how stable the PCA results are can be made by looking for cosine 

content within the top few PCs. It has been noted that when MD trajectories insufficiently 

sample conformational space the top few PCs resemble cosine functions with periods equal 

to half the mode number, which is what occurs for a random diffusion process [47]. The 

resemblance is determined by finding the correlation between the set of T values of the ith 

PC and cos(2πt/bT) where 0 < tT <, b = i/2. We note that CEs derived from geometrical 

simulation do not produce PCs that resemble cosines due to the restriction of conformational 

space imposed by locking in the distance constraints at the beginning of the simulation. 

However, when it occurs in MD simulations, this indicates sampling is limited.

Lastly, we note that the contributions of variables to a PC can be assessed to determine if 

any variables are strongly influencing a particular PC. Additionally, when interpreting the 

component loadings (eigenvector components multiplied by the square root of the associated 

eigenvalue), the squared cosine between the variables and a PC can be used to determine if 

real correlations exist, or if there is only an apparent relation due to the projection onto a low 

dimensional subspace. To infer a correlation, there should be a clustering on a two-

dimensional loading plot, and the squared cosine should be greater than one half. As in all 

statistical interpretations, the best practice is to examine multiple sources of information. For 

the case of a single CE analysis, these sources include the KMO scores and the MSA for 

each variable and/or the condition number of the C-matrix, the scree plot, the collectivity of 

the PCs, the correlations between the variables and the PCs, RMSD mode plots, two-

dimensional scatter plots of observations projected on the PCs, the cosine content of the top 

few modes, and the squared-cosines for variables. When analyzing multiple CEs, additional 

sources of information include the PA spectra, the RMSIP scores, and CO scores. 

Comparisons can be made between each individual CE and a reference CE, constructed by 

combining all of the CEs together, as well as with an appropriate random process. Each CE 

may also be directly compared to each other.
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2 Methods

2.1 Preliminaries

A dynamic trajectory provides snapshots depicting the protein in multiple configurations 

called frames (see Note 5). Denote the trajectory as the set ARaw = {X(t)} where t is a 

discrete variable referring to a particular frame. The vector X may be composed of a subset 

of atoms within the protein. Here, we consider the set of alpha carbons. If the protein 

consists of m residues, then X will be a column vector of dimension 3m. If Acontains n 

observations, then set A is a matrix of dimension 3m × n, since each alpha carbon has (x, y, 

z) coordinates in Cartesian space. To study internal motions of the protein, it is essential to 

set the center of mass of each frame at the origin, and to rotate each frame to its optimally 

aligned orientation relative to a selected reference structure, defined by Xref, which also has 

its center of mass at the origin. Since this translation and rotation process changes the 

coordinates of each frame, the transformed A matrix is denoted as AAligned, which is denoted 

as AAligned = {XAligned(t)} (see Note 6). The choice of the reference structure Xref is not 

critical, and although it is common to use the initial input structure to the simulation, any 

frame is as good as any other. It is also possible to use an average structure, but the method 

of averaging needs to be done with care in an iterative fashion [48]. The data in matrix 

AAligned is then mean centered (here, this means row centering) and we denote this as A′. 

The covariance matrix Q associated with the 3m variables is then defined as Q = A′A′T, 

which is always real and symmetric, and has dimension 3m × 3m. If n ≥ 3m, then the EVD 

of Q will result in 3m − 6 non-zero eigenvalues, where the six zero eigenvalues correspond 

to the modes of the trivial degrees of freedom, 3 for translation and 3 for rotation. The same 

is true for the correlation matrix R, which only differs from Q in that the values of the 

variances are divided by the associated standard deviations, yielding the value of 1 for each 

diagonal element. It is prudent to use the correlation matrix when the standard deviations of 

the variables are strongly skewed. Conversely, correlation based PCA employs normalized 

variables and this standardization tends to inflate the contribution of variables whose 

variance is small, and reduce the influence of variables whose dimensions are large. It is 

therefore not a priori possible to know which approach will provide more insight for any 

given problem. Both methods should probably be explored (see Note 7).

In order to construct a C-matrix based on the internal coordinates defined by interatomic 

distances, it is first necessary to construct the all-to-all distance matrix D for the residues of 

interest. This is a matrix of dimension m(m − 1)/2 × n, where m is the number of residues 

5There are numerous dynamic simulation packages available to generate the CEs, and many different formats for saving the 
coordinates from such a simulation. The method of “packing” the coordinates is not critical, but consistency is of utmost importance. 
This is especially true when a subset of atoms is selected from the main trajectory data. Extreme care should be taken to ensure that 
the data that is analyzed is in the expected format of the PCA package employed.
6It is the nature of dynamic simulations to “shake up” the protein. Thus, to analyze the real internal fluctuations in the protein, all the 
trivial translations and rotations must be eliminated. The way this is normally done is to select a reference structure Xref and a 
correspondence set (CS), e.g., the set of all alpha carbons. Then every structure from the trajectory is optimally aligned to Xref using 
the chosen CS. In some cases, where there are very flexible tails, etc., it may be beneficial to exclude these from the CS so as to 
achieve better overall alignments. It is important to realize that if a subset of atoms is used as a reference, the choice of atoms to use in 
the CS is nontrivial and does affect the outcome of the PCA.
7The results from Q and R based PCA are usually quite similar. We have found that if the movement of a small set of mobile atoms 
defines two or three clusters in the top two PC scatter-plots, Q analysis will tend to enhance the separation, while R will tend to lessen 
it, resulting in subtle differences.
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considered and n is the number of observations (each residue is represented solely by its 

alpha carbon). Here, the data must be centered so that deviations in all lengths will average 

out to zero. Therefore, D′ is constructed in which each row is centered. The covariance 

matrix associated with the m(m − 1)/2 variables is then defined as QD = D′D′T . The 

correlation matrix RD is QD normalized by the variable standard deviations. This type of 

PCA, called dPCA is interpretable if one restricts the size of the set of atoms to small 

numbers. For example, if three residues (alpha carbons) are used, then three modes will 

result from the EVD of QD or RD and the interpretation of the eigenvectors, which are 

composed of three components reveals correlations (if any) in the fluctuations in the lengths 

between the three sets of pairs (see Note 8). This can be useful to interpret fluorescence 

resonance energy transfer (FRET) experiments [36, 37].

When choosing to work in the sample space, either due to a small number of samples or to 

implement a non-linear method, one must construct the kernel matrix (K), which is a n × n 

square symmetric matrix, where n is the number of observations. Each element of K is 

formed by computing K(i, j), where i and j represent two observations from the centered data 

set, using the definition for the specific kernel function of interest, k. Essentially, the kernel 

function maps N dimensional vectors in ℜN from the sample space to a new high 

dimensional (possibly infinite) vector space referred to as feature space. Working in the high 

dimensional feature space can often detect features that are not apparent in sample space. 

The “curse of dimensionality” is avoided by constructing the feature space from a collection 

of inner-products so that the actual mapping function is never calculated. Calculating inner 

products over the sampled data is not by itself an intensive operation. This method of 

avoiding the difficulties normally associated with high-dimensional spaces is known as the 

“kernel trick”. It is worth noting that using this approach, only a subset of feature space is 

being explored, which is limited by the range of the data of the original sample space.

The kernels that can be employed must yield positive-definite symmetric square matrices 

[24]. When the kernel is defined simply as the inner product of the input data (linear kernel), 

then the results of the analysis are identical to the standard PCA. Specifically, one will 

recover the same set of non-zero eigenvalues as that from the covariance matrix based PCA. 

In this sense, kernel PCA (kPCA) subsumes standard PCA. Additional features may be 

detected by using other types of non-linear kernels, such as a Gaussian kernel, a Neural Net 

kernel (i.e., a tanh function), a kernel that maps the data to a set of degree n polynomials 

(either homogeneous or inhomogeneous), or a mutual information kernel. There are no 

rigorous guidelines for which kernel to apply to the data of interest and thus the method of 

kPCA requires intimate knowledge of one’s data (or based on trial an error) as well as how a 

particular kernel might or might not affect the resolution of multiple states. Furthermore, 

most kernel functions have adjustable parameters that need to be set to obtain the best 

resolving power within feature space. Unfortunately, there is no a priori formula for 

parameter optimization because this process is highly dependent on the data used. Lastly, 

8PCA based on internal distance coordinates (dPCA) can be very informative when combined with experimental data. In the case 
where three residues (alpha carbons) are analyzed (e.g., 25, 50, 100), the eigenvector components convey how the distance between 
each alpha carbon pair is correlated (25–50, 35–100, 50–100). Since the information provided is all-to-all pair correlations, it is 
challenging to interpret the results of dPCA on even ten residues, which yields 10 × 9/2 = 45 pairs.
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unlike standard PCA where the PCs are generated by taking the dot product of the DVs and 

the appropriate eigenvector, the process for kPCA is more involved. First, the eigenvectors 

must be normalized in the sample space to reflect the fact that their magnitude in the feature 

space is unity, and then the PCs (for the training set) are calculated by determining the sum 

of the inner products of the normalized eigenvectors with the kernel columns. Having used 

both standard PCA and kPCA, we note that when the parameters are suitably tuned, the 

ability of kPCA to discriminate multiple states from a trajectory is impressive.

If kPCA is to be used, we note that an ideal approach for computationally intensive kernels 

is to first use PCA to reduce the dimension of the data and then apply the kernel methods to 

the top set of PCs. In this approach, we have found that as few as five PCs may be used as 

input to kPCA with no substantial loss in numerical accuracy. This filtering process greatly 

reduces the computational intensiveness of the kPCA (see Note 9), although it does not 

reduce the size of the kernel matrix. Many more properties of kPCA can be found in [24].

For completeness, we briefly consider the method of Independent Component Analysis 

(ICA) [49]. ICA is a method for performing blind source separation, as when one wishes to 

decompose a mixed signal into two signals or a signal plus noise. The underpinning 

mathematics of the method is to detect non-Gaussian processes by looking at higher order 

correlations than second degree. To achieve this, ICA is typically implemented using either 

kurtosis or an information theoretic quantity like mutual information (FastICA) as a contrast 

function [50]. To apply ICA, one must first center the data and then whiten it. Whitening is 

the process of transforming an observed data vector linearly so that one obtains a new 

vector, which is white, i.e., its components are uncorrelated and their variances equal unity. 

In other words, the covariance matrix of a whitened data vector equals the identity matrix. 

One method for whitening data involves an EVD of the covariance matrix and is given by x̃ 

= ED−1/2ETx where x is the centered data, E is the matrix of eigenvectors from the EVD of 

the covariance matrix, with ET its transpose, and D is the diagonal matrix of eigenvalues 

from the EVD of the covariance matrix. Once the data has been centered and whitened, the 

ICA algorithm essentially computes the optimal rotation of the data using higher order 

statistics (e.g., fourth moments), thereby determining the independent components (ICs). We 

note that the algorithm can be computationally expensive for high dimensional data when a 

large number of ICs are to be extracted.

In order to make ICA amenable to large, high-dimensional datasets like protein CEs, PCA is 

first applied to perform a dimensionality reduction and whitening preprocessing step. 

Similar results to ICA may be obtained from kPCA by choosing to work with a kernel that 

maps the data to inner products of degree two polynomials. Such kernels have the property 

of detecting fourth moments, i.e., kurtosis. Alternatively, we note that one may perform post 

hoc analyses of the PCs derived from either standard PCA or kPCA to determine which ones 

have the highest amount of kurtosis. Choosing to examine such PCs will allow the 

investigator to see if non-Gaussianity, as measured by kurtosis, leads to the detection of a 

9We find that performing standard PCA on our datasets and then extracting the top five modes works as an excellent data compressor/
filter. These top five PCs are then analyzed with kPCA and additional features can be extracted. In our testing, we did not find a 
significant difference between using all the raw data or just the top five PCs: The kernels performed about the same in both cases, but 
in the latter, the computations were completed must faster.
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biological signal. The real criterion for assessing the usefulness of ICA is determining if the 

assumptions of the model are met. We find that for investigating native state dynamics, 

where proteins are described by a large set of DOF and are not undergoing large 

conformational shifts, ICA does not provide greater insight than what PCA (or kPCA) 

provides because most of the variables in the CEs are Gaussian.

PCA is a multivariate statistical approach, and there is almost no limit to the variants 

available to an investigator. For example, one may perform sparse PCA (SPCA) in which 

one attempts to form linear combinations that are sparse, meaning that they are 

combinations of less than all the variables. This is done in an attempt to make the 

interpretation of the PCA more manageable as is the case of standard PCA the linear 

combinations include all the variables and in high dimensional data, rendering an 

interpretation as nontrivial at best. Typically this is done by using a thresh-holding method 

such as any component less than c is mapped to zero, where c is an ad hoc chosen number 

between 0 and 1 or by solving an optimization criterion as in the case of SPCA [51]. The 

effect of such a sparsification is the reduction of complexity in interpretation of correlated 

motions and often better cluster separation. The problem with the approach is that there is no 

guarantee that the sparse variables are the important ones. Another approach combines PCA 

and ICA methodologies in a process called Independent Principal Component Analysis 

(IPCA) [52], based on the assumption that biologically meaningful components can be 

obtained if most noise has been removed from the associated loading vectors. In IPCA, PCA 

is used as a preprocessing step to reduce the dimension of the data and to generate the 

loading vectors. The FastICA algorithm is then applied to the previously obtained PCA 

loading vectors to generate the Independent Principal Components (IPCs). In this method, 

the kurtosis measure of the loading vectors is used to order the IPCs. There is also a sparse 

variant with a built-in variable selection procedure implemented by applying soft-

thresholding on the independent loading vectors (sIPCA). Because of the breath of the topic 

and the system dependent details that depend on the data itself, it is beyond the scope of this 

article to provide recipes for ICA, SPCA, IPCA, or sIPCA. The interested reader should 

refer to the references given for more details on the theory and application of those 

approaches. One distinct advantage of standard PCA is that recipes can be provided to 

define protocols and best practices that are largely independent of the specific nature of the 

data.

Before proceeding to describe the recipes for PCA and kPCA, we note that there are 

numerical considerations that must be addressed to suit the investigation at hand. Full 

eigenvector decompositions of large non-sparse matrices scale as (O3) and are thus memory 

intensive. When the DOF in the covariance matrix are less than 10,000 it is reasonable to 

perform a full decomposition on a standard computer, however, for larger matrices, one may 

need to consider numerical approaches such as factoring the C-matrix or kernel matrix or 

computing only a small number of greatest eigenvalues and corresponding eigenvectors. 

Additional concerns include the condition number of the C-matrix as this is strongly 

influenced by the number of observations and is related to the KMO statistic. Typically, the 

condition number improves as the number of samples increases. If a C-matrix is constructed 

from a set of observations that is smaller than the number of DOF represented by the matrix, 
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it will almost always be ill-conditioned. Furthermore, in this case, the C-matrix in not 

invertible and contains many zero eigenvalues. In general, it is good practice to have at least 

ten times more samples than variables to ensure a reasonable KMO score and that most of 

the variables will have a MSA score of 0.5 or greater. Another option is to switch the 

analysis from sample space to feature space by implementing kPCA with an appropriate 

kernel function.

2.2 Recipe I: Essential Dynamics Using Cartesian Coordinate Based PCA

1. Obtain trajectories (one or more) from dynamic simulation. For illustrative 

examples, one MD and three geometrical simulation (FRODA) trajectories for 

myoglobin (PDB ID 1a6n) are considered to explain aspects of PCA. For this 

purpose, details about the setup of the various simulations are ignored, except when 

it pertains to methodology. Additional details can be found in [16]. The MD 

trajectory consists of 2,000 frames after equilibration. One FRODA trajectory has 

2,000 frames (100,000 explored conformations), and the other two FRODA 

trajectories have 10,000 frames. The sampling rate of FRODA is normally set at 1 

out of 50 conformations generated. Here, one long trajectory is obtained from 

sampling every conformation (10,000 explored conformations), meaning it is 10 % 

as long as the 2,000 frame FRODA trajectory in terms of MC-steps, while the other 

is obtained from sampling every tenth conformation (100,000 explored 

conformations), is of equal length.

2. Remove overall translations and rotations by aligning each frame to a reference 

structure.

• We use the starting (crystal) structure as our reference, and our quaternion 

alignment program to optimally align each structure to the reference 

structure. Only the alpha carbon atoms were included in the alignment 

process.

3. Choose the set of atoms for the analysis: This forms the data matrix AAligned.

• Protein conformations (observations or frames) define columns, and rows 

describe the (x, y, z) coordinates of the alpha carbon atoms. In this example, 

all 151 of the alpha carbons are used, giving 453 total DOF (variables).

4. Examine the descriptive statistics for the variables.

• Table 1 shows some statistics for three selected coordinates (variables) to 

highlight the nonuniformity of the standard deviations.

5. Examine the KMO for each CE and MSA scores for each coordinate. The MD and 

FRODA trajectories each with 2,000 samples are compared in Fig. 3. Most 

coordinates from (MD, FRODA) simulation (do not, do) meet the recommended 

KMO cutoff criterion of 0.50. We assess how the KMO statistic changes when the 

number of FRODA samples is increased from 2,000 to 10,000, and investigate how 

the sampling frequency affects the sampling adequacy in Fig. 3b. The overall KMO 

statistic remains about the same, and the individual coordinates that had a low 

KMO statistic did not improve by increasing the number of samples. Even more 
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surprising, the sample rate of 1 leads to a slight improvement of the KMO. Thus, 

there exists a trade-off between the amount of conformational space that a 

simulation explores and the statistical sampling adequacy of those states (see Note 

10).

6. Center the variables of AAligned (row centering): This forms the centered data 

matrix A′.

7. Construct the covariance matrix of the {x, y, z} positions for the atoms using A′: Q 

= A′A′T

• For comparisons, construct the correlation matrix R.

8. Diagonalize Q or R using an EVD.

9. Examine the eigenvalue scree plot to determine the number of eigenvectors to 

include in the reduced vector space that describes the most relevant features. Figure 

4 shows these plots in Panel a along with the conformational and residue RMSDs 

in Panels b and c.

• It is not advisable to include all modes up to a preset percent of variance 

cutoff 3. Note that the characteristics of the scree plot depend heavily on 

whether one is analyzing fluctuations within a single native basin or is 

analyzing combined trajectories of multiple states. For a single native basin 

of random motions, many modes will be required to achieve 50 % of the 

variance. For multiple states/configurations, the first two modes may 

subsume more than 50 % of the variance. Our example MD plot shows that 

most of the variance is captured by one mode, because its CE clusters into 

two conformational states. In contrast, the FRODA plot does not have a 

dominant mode, but rather shows a monotonically decreasing trend 

indicative of random fluctuations about the native state of the protein (the 

input structure).

10. Select the top set of eigenvectors for forming the PCs (Usually 2–20). In our MD 

example, the top two modes reveal how two distinct states of the protein were 

sampled. However, at least ten modes are required to define the essential subspaces 

for a comparison between MD and FRODA CEs (See the RMSIP plots below).

11. Examine the component loadings, which are the product of the square root of the 

eigenvalue with the eigenvector. When the correlation matrix is used, they are also 

the correlation coefficients (cosines) between the variables and factors (PCs). 

Analogous to Pearson’s r, the squared component loading (squared cosine) is the 

10How to improve sampling adequacy in locations with low MSA scores is nontrivial, since more sampling in the same way has 
diminishing returns. We found that the highest MSA scores were obtained when the sampling frequency (in FRODA) was set to one. 
The key to good MSA scores involves picking structures that are close together so as to enhance correlation in the variables. Sampling 
with larger time intervals for MD or lower frequencies with FRODA means that there are smaller correlations between the variables 
and larger partial correlations between sets of variables under the influence of the other variables. On the other hand, a CE consisting 
of uncorrelated samples is required to ensure statistical significance on representing the real dynamics of the system. Thus a best 
practices approach would be to sample over different time scales within a combined CE, in order to obtain sets of samples that are 
very close in conformational space with sets of samples that are more spread out in the conformational space.
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percent of variance in that variable explained by the PC. In Table 2, PC1 is clearly 

capturing the behavior of the first three variables.

• Scatterplots of the component loadings for the top two factors should be 

examined. In Fig. 5 the first ten variables (Var 1 to Var 10) are seen to 

cluster. The angle between the variables on this scatterplot indicates the level 

of correlation, with (0, 90, 180) degrees indicating a correlation of (1, 0, −1).

12. Examine the squared cosines of the variables. These values indicate whether a 

correlation is worthy of interpretation or likely an artifact of projection into a low 

dimensional subspace. Only the first three are shown in Table 3, and they strongly 

support the correlations shown in Fig. 5.

13. Examine the contribution of the variables. Here we show only the first three in 

Table 4, but even from this truncated list, it is clear that the N-terminus residues 

have a large contribution to the first mode.

14. Examine the eigenvector collectivity (see Fig. 6). The top modes tend to be more 

collective than lower modes indicating that many residues are participating in 

collective motions. For our example, the FRODA eigenvector collectivity drops off 

rather steeply suggesting that the top 40 or so modes capture most of the collective 

motions occurring in the native state. This trend of having a set of highly collective 

modes highlights the fact that real protein motions tend to be captured by a 

superposition of PC modes, not a single mode. In contrast, the MD collectivity does 

not drop off rapidly indicating many more modes are required to capture the 

dynamics that the MD simulation produced. These results also clearly demonstrate 

that while PCA modes in totality always form a complete basis set, they are derived 

from statistics, and will be dependent on the sampling. The top PCA modes reflect 

biasing in the sampling, which may not necessarily be of biological importance. It 

is therefore important to carefully choose what and how to sample so that 

biological interpretations can be made.

15. Construct the weighted RMSD modes: Here we map the 3m components of the 

eigenvectors to m new variables that capture the squared displacements of each 

residue to visualize which residues contribute most to the fluctuations of each PCA 

mode. For each eigenvector i, the new mode Ni has m components, with each 

component defined by the square root of the sum of the squares of the three 

variables that contribute to the associated residue, scaled by the square root of the 

corresponding eigenvalue (see Note 11). These results are shown in Fig. 7. The 

mapping equation is given by:

(4)

11One may also decide to not take the square root and work in units of variance.
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• Weighting is done by multiplying by the square root of the eigenvalue for 

the mode, λi. This gives units of angstroms.

• It is often useful to compare the RMSD modes to the overall residue RMSD 

plot from the entire trajectory. Also, one may use the un-weighted RMSD 

modes to see relative displacements that are hard to see in the weighted plots 

due to the typical rapid decrease in the eigenvalues with mode index.

16. Construct the DVs for the trajectory, given by DVi = Xi − Xref and construct the 

PCs.

• PCi is formed by taking the inner product between eigen-vector i and each 

DV (Observation) (see Note 12). Projections can be made on singe modes to 

view as line graphs. Projections on sets of two PCA modes create scatter 

plots that show how the simulation explored the configuration space defined 

by the selected set of modes. In Fig. 8, it is evident that the MD trajectory 

sampled two states of the protein as seen by the two clusters in the 

scatterplot of PC1 versus PC2. In contrast, the projection of the FRODA 

trajectory onto the top two modes shows a uniform distribution.

17. Check the contribution of the observations to the PCs to see if there are particular 

ones that unduly influence the analysis. Here we show only the first three 

observations in Table 5 and the values are percentages.

18. We also examine the squared cosines of the observations when determining if an 

observation belongs to a particular cluster or not. In Table 6, we show values for 

the first three observations. Values in bold are significant at the 0.01 level.

19. Since the sampling in the MD simulation was poor for many variables, we check 

the cosine content of the top two PCs. Comparing PC1 to a half-period cosine, we 

find a 0.63 correlation and in comparing PC2 to a full period cosine, we find a 0.16 

correlation. The high cosine content in mode one suggests that the MD simulation 

should be run longer.

20. When examining two or more sets of PCA modes, determination of how similar the 

trajectories are to each other may be assessed using the CO, RMSIP or PA metrics.

• In Fig. 9, we compare the vector space of the top modes from the MD 

trajectory to that of the FRODA trajectory, each with 2,000 frames. Note 

that the various metrics for SS comparisons depend on the size of the VS and 

SS (see Note 13). As the SS DIM increases, the ability of that SS to capture 

a given eigenvector increases. Because all the metrics have dependencies on 

dimensionality, it is best to have a baseline score for random comparisons as 

a function of the dim(VS) and dim(SS).

12PCs can be scaled by multiplying each PC by its corresponding eigenvalue, called a PC score. This has the effect of showing the 
differences in variance in the modes.
13We have found that using a 20 dimensional subspace is a good compromise between reducing dimension and capturing the essential 
subspace. Often the RMSIP plots can be used to determine a saturation point that indicates the size of the essential space. One should 
always compare to a random process for aid in interpretation.
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2.3 Recipe II: Essential Dynamics Using Internal Distance Coordinate Based PCA

1. Obtain trajectories (one or more) from dynamic simulation.

2. No need to remove overall translations and rotations as internal coordinates are 

being used.

3. Choose the set of atoms.

• For a set of N atoms, there will be N (N − 1)/2 modes. It is recommended 

that less than ten atoms be selected, because otherwise the interpretation of 

the resulting modes becomes increasingly difficult.

4. Construct an all-to-all distance matrix D for the residue set chosen for each 

trajectory.

5. Construct the centered data matrix D′ by centering the variables (row center).

6. Construct the covariance (or correlation) matrix, QD (or RD), from D′.

7. Diagonalize QD (or RD) using an EVD.

• It is best to implement both methods.

8. Examine the eigenvalue scree plot.

9. Select the top set of modes, typically, this is one or two.

• Each component of the distance PCA modes indicates how the relative 

distance between a pair of atoms change. There is no way to map the mode 

components to individual residues.

10. Construct the weighted distance modes (see Note 14).

• Weighting is done by multiplying by the square root of the eigenvalue for 

the mode, λi.

11. Construct the DVs for the trajectory, given by DVi = Xi − Xref , and construct the 

PCs.

• Although there is a physical difference between using internal and Cartesian 

coordinates, mathematically the same procedures described above in terms 

of taking inner products and forming projections are identical.

12. When examining two or more sets of PCA modes, determination of how similar the 

trajectories are to each other may be assessed using the CO, RMSIP or PA metrics.

2.4 Recipe III: Essential Dynamics Using Cartesian Coordinate Based Kernel PCA

1. Obtain trajectories (one or more) from dynamic simulation.

2. Remove overall translations and rotations by aligning each frame to a reference 

structure.

14These plots are the most informative results from the dPCA on a single trajectory. Furthermore, when there are few components, the 
interpretation is straightforward.
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3. Select the set of atoms for the analysis to define the data matrix, A.

4. Center the variables of A (row center) to define the data matrix A′.

5. Construct the kernel matrix, K, of {x, y, z} positions for the atoms using A′.

• The matrix K has dim (n × n) where n is the number of observations.

• Each element (i, j) in the kernel is determined using a chosen kernel 

function, which has the general form as Ki,j = K(k(xi, xj ))i,j . A linear kernel 

is given as K(x, y) = (x · y), and a homogeneous polynomial is given by K(x, 

y) = (x · y)d = (Cd(x), Cd(y)) where CD maps x to the vector CD(x) with 

entries that are all possible nth degree ordered products of the entries of x. 

Another kernal type uses a Gaussian weighting function given by 

 where the standard deviation, σ, is an adjustable 

parameter. A neural net kernel is given as K(x, y) = tanh(m(x · y) + b), and a 

mutual information kernel is given as K(x, y) = MI(x, y) where 

. These are commonly employed 

kernels in many fields, and are not necessarily particularly useful for protein 

dynamics. Nevertheless, because higher order correlations in large datasets 

can be filtered with these kernels, and as such, we have explored all of them.

6. Diagonalize K using an EVD, and ignore the zero eigenvalues.

7. Examine the scree plot, and from where the kink is, select the top modes.

• The characteristics of this plot depend heavily on whether one is analyzing 

fluctuations within a single native basin or is analyzing combined 

trajectories of multiple states. In kPCA, typically that first few eigenvalues 

are much larger than the remainder.

8. Determine the eigenvector collectivity. When using kPCA with properly tuned 

parameters, the top eigenvector often has a collectivity of 0.5 or higher.

9. Select the top set of eigenvectors for forming the kernel principal components 

(kPCs) (Usually 2–5).

10. Scale the top eigenvectors using the condition 1 = λn(αn · αn) where αn is the nth 

eigenvector (a column vector) of K and λn is the corresponding nth eigenvalue of K.

• The eigenvectors are derived from the feature space and usually do not have 

a meaningful interpretation in the sample space.

11. Construct the DVs for the trajectory given by DVi = Xi − Xref, and then construct 

the kPCs.

•

Calculate kPCn using . Note that x is a test vector, 

and not a training vector (a vector are used to create the kernel). If only the 
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original centered data is to be used, i.e., the data used to construct K, then all 

the elements of K are already determined. Projections can be made on singe 

modes to view as line graphs or on two PCA modes create scatter plots that 

show how the simulation explored the configuration space defined by the 

selected set of modes.

• We applied PCA and kPCA to the set of four 75 residue proteins to assess 

the ability of the methods to achieve cluster separation. The results are 

shown in Fig. 10.

12. When examining two or more sets of kPCA modes, determination of how similar 

the trajectories are to each other may be assessed using the following metrics. We 

note that the essential subspaces in kPCA are quite small, comprised of usually five 

or so modes. This is especially true when standard PCA was used as a 

preprocessing dimensional reduction step. Additionally, subspace comparisons 

require that the parent vector spaces have the same dimensionality. Therefore, it is 

possible to compare the essential subspaces derived from different kernels only 

when the same number of samples is used.

• In Fig. 10f, we show that the subspaces for the top modes generated from the 

different kPCA approaches are quite similar using the RMSIP scores and the 

first PA. The most dissimilar was the SS derived from the MI kernel.

Notes
1Many statistical packages support PCA and factor analysis (FA). While both methods use 

EVD, what is being factored is not the same. In PCA there is no underlying model for 

interpreting the “factors”, and second, PCA does not account for error in the measurements, 

and thus if using the correlation matrix, it places all ones on the diagonal unlike FA, which 

places the communalities on the diagonal.
2Here we refer to the spectral decomposition of a matrix as an eigenvalue decomposition 

(EVD). With square symmetric matrices there is no need to use a singular value 

decomposition (SVD) since the right and left vectors from the SVD are identical and the 

singular values are equal to the square root of the eigenvalues from the EVD.
3There are multiple criteria for choosing modes (eigenvectors) in PCA (or FA). Since no 

underlying model is being used, the “interpretability” criterion does not apply. Also, the 

“Eigenvalue Larger than 1” only applies when using the correlation matrix. In protein 

dynamics, we find that trying to capture a specific amount of variance, say 50 %, does not 

work well and often over-estimates the essential subspace. The Cattell criterion for mode 

selection tends to work best and is applied by constructing the eigenvalue scree plot and 

identifying the “kink”. Unlike with FA, there is no harm in doing this subjectively. We 

suggest that this approach be combined with subspace analysis to identify the saturation 

point for the RMSIP plots, as this is a good indicator of the essential subspace that is 

invariant to the “noise” in the data.
4Given a C-matrix that is well conditioned, most common algorithms that perform EVDs 

(LINPACK, JAMA, etc.) will generate a set of eigenvalues in increasing order and a 

matching set of eigenvectors. The eigenvectors are orthogonal and normalized to have a 
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magnitude of 1. Thus, any set of N eigenvectors constitutes an N dimensional orthonormal 

subspace of the parent vector space, defined by the full rank of the C-matrix.
5There are numerous dynamic simulation packages available to generate the CEs, and many 

different formats for saving the coordinates from such a simulation. The method of 

“packing” the coordinates is not critical, but consistency is of utmost importance. This is 

especially true when a subset of atoms is selected from the main trajectory data. Extreme 

care should be taken to ensure that the data that is analyzed is in the expected format of the 

PCA package employed.
6It is the nature of dynamic simulations to “shake up” the protein. Thus, to analyze the real 

internal fluctuations in the protein, all the trivial translations and rotations must be 

eliminated. The way this is normally done is to select a reference structure Xref and a 

correspondence set (CS), e.g., the set of all alpha carbons. Then every structure from the 

trajectory is optimally aligned to Xref using the chosen CS. In some cases, where there are 

very flexible tails, etc., it may be beneficial to exclude these from the CS so as to achieve 

better overall alignments. It is important to realize that if a subset of atoms is used as a 

reference, the choice of atoms to use in the CS is nontrivial and does affect the outcome of 

the PCA.
7The results from Q and R based PCA are usually quite similar. We have found that if the 

movement of a small set of mobile atoms defines two or three clusters in the top two PC 

scatter-plots, Q analysis will tend to enhance the separation, while R will tend to lessen it, 

resulting in subtle differences.
8PCA based on internal distance coordinates (dPCA) can be very informative when 

combined with experimental data. In the case where three residues (alpha carbons) are 

analyzed (e.g., 25, 50, 100), the eigenvector components convey how the distance between 

each alpha carbon pair is correlated (25–50, 35–100, 50–100). Since the information 

provided is all-to-all pair correlations, it is challenging to interpret the results of dPCA on 

even ten residues, which yields 10 × 9/2 = 45 pairs.
9We find that performing standard PCA on our datasets and then extracting the top five 

modes works as an excellent data compressor/filter. These top five PCs are then analyzed 

with kPCA and additional features can be extracted. In our testing, we did not find a 

significant difference between using all the raw data or just the top five PCs: The kernels 

performed about the same in both cases, but in the latter, the computations were completed 

must faster.
10How to improve sampling adequacy in locations with low MSA scores is nontrivial, since 

more sampling in the same way has diminishing returns. We found that the highest MSA 

scores were obtained when the sampling frequency (in FRODA) was set to one. The key to 

good MSA scores involves picking structures that are close together so as to enhance 

correlation in the variables. Sampling with larger time intervals for MD or lower frequencies 

with FRODA means that there are smaller correlations between the variables and larger 

partial correlations between sets of variables under the influence of the other variables. On 

the other hand, a CE consisting of uncorrelated samples is required to ensure statistical 

significance on representing the real dynamics of the system. Thus a best practices approach 

would be to sample over different time scales within a combined CE, in order to obtain sets 

of samples that are very close in conformational space with sets of samples that are more 

spread out in the conformational space.
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11One may also decide to not take the square root and work in units of variance.
12PCs can be scaled by multiplying each PC by its corresponding eigenvalue, called a PC 

score. This has the effect of showing the differences in variance in the modes.
13We have found that using a 20 dimensional subspace is a good compromise between 

reducing dimension and capturing the essential subspace. Often the RMSIP plots can be 

used to determine a saturation point that indicates the size of the essential space. One should 

always compare to a random process for aid in interpretation.
14These plots are the most informative results from the dPCA on a single trajectory. 

Furthermore, when there are few components, the interpretation is straightforward.
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Fig. 1. 
(a) Eigenvalue Scree plot for first 100 modes of two example protein simulations (primary 

y-axis) and a random process (secondary y-axis), each having 225 dimensions. The units are 

angstrom squared (positional variance). (b) Average RMSIP scores for a random process in 

different vector space dimensions as a function of subspace dimension. Error bars show plus 

and minus one standard deviation
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Fig. 2. 
(a) RMSIP scores for inter-comparisons between three proteins each having 75 residues and 

a random process with 225 DOF. Only the true self-comparison yields a curve that saturates 

rapidly within a small essential space defined by the first nine modes. The decoy plots have 

much more in common with the protein dynamics of interest compared to the random 

process up to the first 30 modes. (b) The Z-scores for the RMSIP scores shown in panel a. 

(c) Comparison of two myosin V (795 residues) CEs run under different simulation 

conditions and a random process with 2,385 DOF. Again, note the rapid saturation of the 

RMSIP scores in an essential subspace defined by the first ten modes. (d) The Z-scores for 

the RMSIP scores in Panel c
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Fig. 3. 
The Kaiser-Meyer-Olkin MSA for (a) the FRODA and MD CEs each with 2,000 frames, 

and (b) for the FRODA CEs each with 10,000 frames. The overall KMO score is shown 

parenthetically in the legend. (c) Relationship between residue RMSD and MSA for MD. 

(d) Relationship between residue RMSD and MSA for FRODA. (e) Ribbon diagram colored 

by the MSA scores for MD. (f) Ribbon diagram colored by the MSA scores for FRODA
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Fig. 4. 
(a) Eigenvalue scree plots for the FRODA and MD CEs showing both the correlation 

explained in each mode and the cumulative correlations (Since the PCA was based on the 

correlation matrix). (b) The conformation RMSD of the MD and FRODA trajectories. Each 

value is with respect to the starting structure (crystal structure). (c) The residue RMSD for 

the MD and FRODA trajectories
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Fig. 5. 
The correlations between the first ten variables and the top two PCs. Notice how these 

variables form a tight cluster with small angles between each, indicating that they are 

correlated on these PCs. The boundary line on right is an arc of the unit circle to indicate 

how close the values are to 1
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Fig. 6. 
The eigenvector collectivity (EVC) for the entire set of eigenvectors from both the MD and 

FRODA PCA. Note that the mode index is plotted with decreasing size of the eigenvalue, so 

mode index 1 is the top mode. This plot indicates that the collectivity measure should not be 

of primary concern
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Fig. 7. 
The RMSD and the top three RMSD modes are compared from (a) MD and (b) FRODA 

PCA
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Fig. 8. 
(a) MD and (b) FRODA displacement vectors are projected onto their respective top two 

PCs as a scatter plot
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Fig. 9. 
(a) The cumulative overlap (CO) of each MD eigenvector with the entire set of FRODA 

eigenvectors defining the subspace of indicated size. We do not show the reverse metric, 

which is not symmetric, but yields similar values. (b) The RMSIP scores for the 

comparisons of random processes with 453 DOF, two FRODA simulations using the same 

conditions, and the MD and FRODA simulations. Error bars on the random process scores 

indicate plus and minus one standard deviation for 50 iterations. (c) The Z-scores for the 

RMSIP scores. (d) The PA spectra for the comparisons of the MD and FRODA simulations 

using the indicated SS DIM
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Fig. 10. 
Cluster separation for the dynamics of four different proteins using different kernels, but all 

using the same CE containing trajectories involving 2,000 FRODA frames for each of the 

four proteins. (a) Linear kernel equivalent to standard PCA. (b) Homogeneous polynomial 

kernel of degree two, which is sensitive to fourth order statistics. (c) Gaussian kernel with 

standard deviation set to 50. (d) Neural net kernel with no offset and a slope parameter set to 

10−4. (e) Mutual Information kernel. (f) Subspace comparisons of the four kernels in b–d 
using the linear kernel essential space as the reference. The SS DIM in all cases was five. 

The primary y-axis shows RMSIP scores while the secondary y-axis shows the principal 

angle value in degrees
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Table 1

Descriptive statistics for three variables in the MD simulation data

Variable Minimum Maximum Mean Standard deviation

Var 1 3.456 11.489 7.085 1.610

Var 10 9.568 12.980 11.530 0.707

Var 20 8.390 10.467 9.423 0.301
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Table 2

Component Loadings for the first three variables in the MD trajectory

Variable PC1 PC2 PC3

Var 1 0.807 −0.218 −0.056

Var 2 0.890 −0.223 −0.095

Var 3 0.867 −0.254 −0.111
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Table 3

Squared cosines of the variables

Variable PC1 PC2 PC3

Var 1 0.651 0.048 0.003

Var 2 0.791 0.050 0.009

Var 3 0.752 0.065 0.012
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Table 4

Contribution of the variables to the PCs as percent

Variable PC1 PC2 PC3

Var 1 0.570 0.137 0.014

Var 2 0.693 0.143 0.039

Var 3 0.659 0.186 0.053
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Table 5

Contribution of the observations to the PCs as percent

Observation PC1 PC2 PC2

Obs 1 0.015 0.529 0.147

Obs 2 0.002 0.329 0.121

Obs 3 0.003 0.485 0.033
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Table 6

Squared cosines of the observations

Observation PC1 PC2 PC3

Obs 1 0.026 0.285 0.052

Obs 2 0.005 0.222 0.054

Obs 3 0.007 0.351 0.016
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