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Abstract
Growing computing capacity and algorithmic advances have facilitated the study of increasingly
large biomolecular systems at longer timescales. However, with these larger, more complex systems
come questions about the quality of sampling and statistical convergence. What size systems can be
sampled fully? If a system is not fully sampled, can certain “fast variables” be considered well-
converged? How can one determine the statistical significance of observed results? The present
review describes statistical tools and the underlying physical ideas necessary to address these
questions. Basic definitions and ready-to-use analyses are provided, along with explicit
recommendations. Such statistical analyses are of paramount importance in establishing the
reliability of simulation data in any given study.
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1. Introduction
It is a well-accepted truism that the results of a simulation are only as good as the statistical
quality of the sampling. To compensate for the well-known sampling limitations of
conventional molecular dynamics (MD) simulations of even moderate-size biomolecules, the
field is now witnessing the rapid proliferation of multi-processor computing, new algorithms,
and simplified models. These changes underscore the pressing need for unambiguous measures
of sampling quality. Are current MD simulations long enough to make quantitative predictions?
How much better are the new algorithms than the old? Can even simplified models be fully
sampled?

Overall, errors in molecular simulation arise from two factors: inaccuracy in the models, and
insufficient sampling. The former is related to choices in representing the system, e.g., all-atom
vs. coarse grained models, fixed charge vs. polarizable force fields, and implicit vs. explicit
solvent, as well as technical details like the system size, thermodynamic ensemble, and
integration algorithm used. Taken in total, these choices define the model used to represent the
system of interest. The second issue, quality of sampling, is largely orthogonal to the choice
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of model. In some sense, assessing the quality of the sampling is a way of asking how accurately
a given quantity was computed for the chosen model. While this review will focus on the issue
of sampling, it is important to point out that without adequate sampling, the predictions of the
forcefields remain unknown: very few conclusions, positive or negative, can be drawn from
an undersampled calculation. Those predictions are embodied most directly in the equilibrium
ensemble that simulations have apparently failed to produce in all but small-molecule systems
1, 2. Thus, advances in forcefield design and parameterization for large biomolecules must
proceed in parallel with sampling advances and their assured quantification.

This review will attempt to acquaint the reader with the most important ideas in assessing
sampling quality. We will address both the statistical uncertainty in individual observables and
quantification of the global quality of the equilibrium ensemble. We will explicitly address
differing approaches necessary for standard dynamics simulations, as compared to algorithms
such as replica exchange, and while we use the language of molecular dynamics, virtually all
of the arguments apply equally to Monte Carlo methods as well. Although this review will not
specifically address path sampling, many of the ideas carry over to what amounts to equilibrium
sampling of the much larger space of paths. We will recommend specific ‘best practices’, with
the inevitable bias toward the authors’ work. We have tried to describe the intellectual history
behind the key ideas, but the article is ultimately organized around practically important
concepts.

For the convenience of less experienced readers, key terms and functions have been defined
in the appendix: average, variance, correlation function, and correlation time.

1.1. Examples big and small: butane and rhodopsin
Example trajectories from small and large systems (to which we will return throughout the
review) illustrate the key ideas. In fact, almost all the complexity we will see in large systems
is already present in a molecule as simple as n-butane. Nevertheless, it is very valuable to look
at both “very long” trajectories and some that are “not long enough.” Concerning the definition
of “long,” we hope that if ‘we know it when we see it,’ then we can construct a suitable
mathematical definition. Visual confirmation of good sampling is still an important check on
any quantitative measure.

Butane—Let us first consider butane, as in Figure 1. Several standard molecular coordinates
are plotted for a period of 1 nsec, and it is clear that several timescales less than 1 nsec are
present. The very fastest motions (almost vertical in the scale of the figure) correspond to bond
length and angle vibrations, while the dihedrals exhibit occasional quasi-discrete transitions.
The CH3 dihedral, which reports on methyl spinning, clearly makes more frequent transitions
than the main dihedral.

Perhaps the trajectory of butane’s C-C-C angle is most ambiguous, since there appears to be a
slow overall undulation in addition to the rapid vibrations. The undulation appears to have a
frequency quite similar to the transition rate of the main dihedral, and underscores the point
that generally speaking, all degrees of freedom are coupled, as sketched in Figure 2. In the
case of butane, the sampling quality of the C-C-C angle may indeed be governed by the slowest
motions of the molecule, isomerization of the central torsion.

Rhodopsin: It is perhaps not surprising that all of the degrees of freedom are tightly coupled
in a simple system like butane. It seems reasonable that this coupling may be less important in
larger biomolecular systems, where there are motions on time scales ranging from
femtoseconds to milliseconds; indeed, it is commonly assumed that small-scale
reorganizations, such as side-chain torsions in proteins, can be computed with confidence from
molecular dynamics simulations of moderate length. While this assumption is likely true in
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many cases, divining the cases when it holds can be extremely difficult. As a concrete example,
consider the conformation of the retinal ligand in dark-state rhodopsin. The ligand is covalently
bound inside the protein via Schiff base linkage to an internal lysine, and contains an aromatic
hydrocarbon chain terminated by an ionone ring. This ring packs against a highly conserved
tryptophan residue, and is critical to this ligand’s role as an inverse agonist.

The ring’s orientation, relative to the hydrocarbon chain, is largely described by a single torsion,
and one might expect that this kind of local quantity would be relatively easy to sample in a
molecular dynamics simulation. The quality of sampling for this torsion would also seem easy
to assess, because as for most torsions, there are three stable states. However, Figure 3 shows
that this is not the case, because of coupling between fast and slow modes. The upper frame
of Figure 3 shows a time series of this torsion from a molecular dynamics simulation of dark
state rhodopsin 3; the three expected torsional states (g+, g−, and t) are all populated, and there
are a number of transitions, so most practitioners would have no hesitation in concluding that
a) the trajectory is reasonably well sampled, and b) that all three states are frequently populated,
with g− the most likely and trans the least. The middle panel, however, shows the same
trajectory extended to 150 ns; it too seems to suggest a clear conclusion, in this case that the
transitions in the first 50 ns are part of a slow equilibration, but that once the protein has relaxed
the retinal is stable in the g− state. The bottom panel, containing the results of extending the
trajectory to 1600 ns, suggests yet another distinct conclusion, that g− and t are the predominant
states, and rapidly exchange with each other, on the nanosecond scale. The black line on this
graph, showing the time series smoothed using a 10 ns window, seems to suggest that the there
is an additional relaxation occurring, with the population of the trans state increasing.

These results highlight the difficulties involved in assessing the convergence of single
observables. No amount of visual examination of the upper and middle panels would have
revealed the insufficiency of the sampling (although it is interesting to note that the ‘effective
sample size’ described below is not too large). Rather, it is only after the fact, in light of the
full 1600 ns trajectory, that the sampling flaws in the shorter trajectories become obvious. This
highlights the importance of considering time scales broadly when designing and interpreting
simulations. This retinal torsion is a local degree of freedom, and as such should relax relatively
quickly, but the populations of its states are coupled to the conformation of the protein as a
whole. As a result, converging the sampling for the retinal requires reasonable sampling of the
protein’s internal degrees of freedom, and is thus a far more difficult task than it would first
appear.

1.2. Absolute vs. relative convergence
Is it possible to describe a simulation as absolutely converged? From a statistical point of view,
we believe the answer is clearly “no”, except in those cases where the correct answer is already
known by other means. Whether a simulation employs ordinary MD or a much more
sophisticated algorithm, so long as the algorithm correctly yields canonical sampling according
to the Boltzmann factor, one can expect the statistical quality will increase with the duration
of the simulation. In general, the statistical uncertainty of most conceivable molecular
simulation algorithms will decay inversely with the square-root of simulation length. The
square-root law should apply once a stochastic simulation process is in the true sampling regime
– i.e., once it is long enough to produce multiple properly distributed statistically independent
configurations.

The fundamental perspective of this review is that simulation results are not absolute, but rather
are intrinsically accompanied by statistical uncertainty 4–8. Although this view is not novel, it
is at odds with informal statements that a simulation is “converged.” Beyond quantification of
uncertainty for specific observables, we also advocate quantification of overall sampling
quality in terms of the “effective sample size” 8 of an equilibrium ensemble 9, 10.
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As a conceptual rule-of-thumb, any estimate for the average of an observable which is found
to be based on fewer than ~20 statistically independent configurations (or trajectory segments)
should be considered unreliable. There are two related reasons for this. First, any estimate of
the uncertainty in the average based on a small number of observations will be unreliable
because this uncertainty is based on the variance, which converges more slowly than the
observable (i.e., average) itself. Secondly, any time the estimated number of statistically
independent observations (i.e., effective sample size) is ~20 or less, both the overall sampling
quality and the sample-size estimate itself must be considered suspect. This is again because
sample-size estimation is based on statistical fluctuations that are, by definition, poorly sampled
with so few independent observations.

Details and ‘best practices’ regarding these concepts will be given below.

1.3. Known unknowns
Lack of ergodicity – unvisited regions of configuration space—No method known
to the authors can report on a simulation’s failure to visit an important region of configuration
space unless these regions are already known in advance. Thus, we instead focus on assessing
sampling quality in the regions of space that have been visited. One can hope that the generation
of many effectively independent samples in the known regions of configuration space with a
correct algorithm is good “insurance” against having missed parts of the space – but certainly
it is no guarantee. Larger systems are likely to have more thermodynamically relevant
substates, and may thus require more independent samples even in the absence of significant
energetic barriers.

Small states rarely visited in dynamical simulation—This issue is also related to
ergodicity, and is best understood through an example. Consider a potential like that sketched
in Figure 4, with two states of 98% and 2% population at the temperature of interest. A “perfect”
simulation capable of generating fully independent configurations according to the associated
Boltzmann factor would simply yield 2 of every 100 configurations in the small state, on
average. However, a finite dynamical simulation behaves differently. As the barrier between
the states gets larger, the frequency of visiting the small state will decrease exponentially. Thus,
estimating an average like x will be very difficult – since the small state might contribute
appreciably. Further, quantifying the uncertainty could be extremely difficult if there are only
a small number of visits to the small state – because the variance will be poorly estimated.

1.4. Non-traditional simulation methods
The preceding discussion applied implicitly to what we classify as dynamical simulations –
namely, those simulations in which all correlations in the final trajectory arise because each
configuration is somehow generated from the previous one. This time-correlated picture
applies to a broad class of algorithms: MD, Langevin and Brownian dynamics, as well as
traditional Monte Carlo (MC, also known as Markov-chain Monte Carlo). Even though MC
may not lead to true physical dynamics, all the correlations are sequential.

However, in other types of molecular simulation, any sampled configuration may be correlated
with configurations not sequential in the ultimate “trajectory” produced. That is, the final result
of some simulation algorithms is really a list of configurations, with unknown correlations,
and not a true trajectory in the sense of a time series.

One increasingly popular method which leads to non-dynamical trajectories is replica exchange
Monte Carlo or molecular dynamics 11–13, which employs parallel simulations at a ladder of
temperatures. The “trajectory” at any given temperature includes repeated visits from a number
of (physically continuous) trajectories wandering in temperature space. Because the continuous
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trajectories are correlated in the usual sequential way, their intermittent – i.e., non-sequential
– visits to the various specific temperatures produce non-sequential correlations when one of
those temperatures is considered as a separate ensemble or “trajectory.”14 Less prominent
examples of non-dynamical simulations occur in a broad class of polymer-growth algorithms
(e.g., References 15–17).

Because of the rather perverse correlations that occur in non-dynamical methods, there are
special challenges in analyzing statistical uncertainties and sampling quality. This issue has
not been well explored in the literature; see however 10, 18, 19. We therefore present some
tentative thoughts on non-dynamical methods, based primarily on the notion that independent
simulations appear to provide the most definitive means for analyzing non-dynamical
simulations. In the case of replica exchange, understanding the difference between “mixing”
and sampling will prove critical to any analysis.

2. Error estimation in single observables
One of the main goals of biomolecular simulation is the estimation of ensemble averages, which
should always be qualified by estimates of statistical uncertainty. We will review the two main
approaches to estimating uncertainty in averages, but a general note of caution should be
repeated. Because all variables can be correlated in a complex system, the so-called “fast”
variables may not be as fast as they appear based on standard error estimation techniques: see
Figure 2. As in the examples of the rhodopsin dihedral, above, even a single coordinate
undergoing several transitions may not be well sampled. Also, investigators should be wary
of judging overall sampling quality based on a small number of observables unless they are
specifically designed to measure ensemble quality, as discussed below.

The present discussion will consider an arbitrary observable f, which is a function of the
configuration x of the system being simulated. The function f(x) could represent a complex
measure of an entire macromolecule, such as the radius of gyration, or it could be as simple as
a single dihedral or distance.

Our focus will be on time correlations and block averaging. The correlation-time analysis has
been in use for some decades 7, including to analyze the first protein MD simulation 20, and it
embodies the essence of all the single-observable analyses known to the authors. The block
averaging approach 5, 21 is explicitly described below because of its relative simplicity and
directness in estimating error using simple variance calculations. Block averaging “short cuts”
the need to calculate a correlation time explicitly, although timescales can be inferred from the
results. Similarly, the “ergodic measure” of Thirumalai and coworkers 22–24, not described
here, uses variances and correlation times implicitly.

Both the correlation time analysis and the block averaging scheme described below assume
that a dynamical trajectory is being analyzed. Again, by “dynamical” we only mean that
correlations are “transmitted” via sequential configurations – which is not true in a method like
replica exchange.

2.1 Correlation time analysis
The correlation-time analysis of a single observable has a very intuitive underpinning. Consider
first that dynamical simulations (e.g., molecular and Langevin dynamics), as well as ‘quasi-
dynamical’ simulations (e.g., typical Monte Carlo 25), create trajectories that are correlated
solely based on the sequence of the configurations. As described in the Appendix, the
correlation time τf measures the length of simulation time – whether for physical dynamics or
Monte Carlo – required for the trajectory to lose “memory” of earlier values of f. Therefore,
the correlation time τf for the specific observable f provides a basis for estimating the number
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of statistically independent values of f present in a simulation of length tsim, namely

. By itself,  would suggest good sampling for the particular observable
f.

The correlation time is computed from the correlation function (see Appendix), and it is useful
to consider an example. Figure 5 shows the time correlation functions computed for individual
state lifetimes as measured by a 100 ns simulation of butane. Specifically, for each snapshot
from the trajectory, the central torsion was classified as trans, g+, or g−. A time series was then
written for each state, with a value of 1 if the system was in that state and 0 otherwise. The
autocorrelation functions for each of those time series are shown in Figure 5. All three
correlation functions drop smoothly to zero within 200 ps, suggesting that a 100 ns simulation
should contain a very large number of independent samples. However, the populations for the
3 states over the course of the trajectory are 0.78, 0.10, and 0.13 for the trans, g+, and g− states,
respectively. The g+ and g− states are physically identical, and thus should have the same
populations in the limit of perfect sampling. Thus even a very long simulation of a very simple
system is incapable of estimating populations with high precision.

To obtain an estimate of the statistical uncertainty in an average 〈f〉, the correlation time τf must

be used in conjunction with the variance  (square of the standard deviation; see Appendix)
of the observable. By itself, the standard deviation only gives the basic scale or range of
fluctuations in f, which might be much larger than the uncertainty of the average 〈f〉. In other
words, it is possible to know very precisely the average of a quantity that fluctuates a lot: as
an extreme example, imagine measuring the average height of buildings in Manhattan. In a
dynamical trajectory, the correlation time τf provides the link between the range of fluctuations
and the precision (uncertainty) in an average, which is quantified by the standard error of the
mean, SE,

(1)

In this notation,  is the number of independent samples contained in the trajectory, tsim and
is the length of the trajectory. The standard error can be used to approximate confidence
intervals, with a rule of thumb being that ±2SE represents roughly a 95% confidence interval
26. The actual interval depends on the underlying distribution and the sampling quality as

embodied in .; see reference 25 for a more careful discussion.

It has been observed that the simple relation between correlation time and sampling quality

embodied in the estimate  is actually too conservative in typical cases 27. That is,
even though the simulation may require a time τf to “forget” its past (with respect to the
observable f), additional information beyond a single estimate for f is obtained in the period of
a single correlation time – i.e., from partially correlated configurations. However, the
improvement in sampling quality is modest – the effective sample size may be double the
estimate based simply on τf. Such subtleties are accounted for automatically in the block-
averaging analysis described below.

Understanding the correlation time analysis, as well as the habitual calculation of correlation
functions and times, is extremely useful. Yet the analysis has weaknesses for quantifying
uncertainty that suggest relying on other approaches for generating publication-quality error
bars. First, like any single-observable analysis, the estimation of correlation times may fail to
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account for slow timescales in observables not considered: recall the rhodopsin example.
Second, the calculation of correlation times becomes less reliable in precisely those situations
of greatest interest – when a second, slower timescale enters the intrinsically noisier tail of the
correlation function. The third weakness was already described: a lack of full accounting for
all statistical information in the trajectory. These latter considerations suggest that a block-
averaging procedure, described next, is a preferable analysis of a single observable.

2.2 Block averaging
When executed properly, the block-averaging analysis automatically corrects two of the
weaknesses in correlation-time estimates of the error based on Eq. (1). In particular, any slow
timescales present in the time series for the particular observable are accounted for (although
only in regard to the observable studied). Second, because block averaging uses the full
trajectory, it naturally includes all the information present. The block averaging analysis was
first reported by Flyvbjerg and Petersen 5, who credited the previously un-published idea to
others.

The approach can be described simply (although it is not easily understood from the original
reference). A trajectory with N = M · n snapshots is divided into M segments (“blocks”), with
an initial very short block length, such as n =1 (See Fig 6). The average of the observable is
calculated for each block yielding M values for 〈f〉i, with i =1, …, M. The block length n is
gradually increased and the set of block averages is recalculated for each length. Further, for
each value of n, the standard deviation among the block averages, σn, is used to calculate a
running estimate of the overall standard error, namely,

(2)

This is the standard error in estimates of the mean based on blocks (trajectory segments) of
length n. Clearly, for small n (and large M = N/n) when consecutive blocks are highly correlated,
BSE greatly under-estimates the statistical error, since Eq. (2) only yields the true standard
error when all M blocks are statistically independent. On the other hand, once the blocks are
essentially independent of one another, (i.e., when the block length is substantially greater than
the correlation time, n ≫ τ f/Δt), BSE will cease to vary with n and become a reliable estimator
of the true SE. . Fig. 6 illustrates this behavior for a trigonometric function of butane’s main
(C-C-C-C) dihedral.

The function BSE(f, n) therefore increases monotonically with n and asymptotes to the true
standard error associated with 〈f〉, as seen in Fig. 6. Thus, a plot of BSE(f, n) includes a “signal”
as to whether or not the error estimate has converged, which is not subject to the extremes of
numerical uncertainty associated with the tail of a correlation function. Furthermore, the block-
averaging analysis directly includes all trajectory information (all frames).

The only weakness of the block-averaging approach, which is minor in our opinion, is that it
does not directly render the correlation time. Having the correlation time in hand provides
important physical intuition. Nevertheless, we note that the correlation time can be estimated
cleanly using the block averaging results. Specifically, using the trajectory f (t), one can directly

calculate the variance σf and then solve for  using Eq. (1). The correlation time is then given

approximately by , which will somewhat under-estimate the correlation time (as
noted implicitly by Harris and Berg 27) perhaps by a factor of ~2.
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It is not uncommon for researchers to use the name “block averaging” to describe a second,
far simpler procedure. In this case, a single time series is split into M blocks, and the variance
between the averages for those blocks is presented as the uncertainty. However, unlike the true
block averaging protocol described above, this procedure is not statistically meaningful,
because the single block size is chosen arbitrarily; it is only by systematically varying the block
size that one can reliably draw conclusions about the uncertainty.

2.3 Summary – Single Observables in dynamical simulations
Several points are worth emphasizing: (i) Single observables should not be used to assess
overall sampling quality. (ii) The central ideas in single-observable analysis are that the
correlation time separates statistically independent values of the observable, and that one would
like to have many statistically independent “measurements” of the observable – i.e.,

. (iii) The block-averaging analysis is simple to implement and provides direct
estimation of statistical uncertainty. We recommend that the correlation time and effective

sample size also be estimated to ensure . (iv) In a correlation time analysis, one
wants to ensure the total simulation time is a large multiple of the correlation time – i.e., tsim/
τf ≫1.

2.4. Analyzing single observables in non-dynamical simulations
As discussed earlier, the essential fact about data from non-dynamical simulations (e.g., replica
exchange and polymer growth methods) is that a configuration occurring at one point in the
“trajectory” may be highly correlated with another configuration anywhere else in the final list
of configurations. Similarly, a configuration could be fully independent of the immediately
preceding or subsequent configurations. To put it most simply, the list of configurations
produced by such methods is not a time series, and so analyses based on the explicit or implicit
notion of a correlation time (time correlations are implicit in block averaging) cannot be used.

From this point of view, the only truly valid analysis of statistical errors can be obtained by
considering independent simulations. Ideally, such simulations would be started from different
initial conditions to reveal “trapping” (failure to explore important configurational regions)
more readily. Running multiple simulations appears burdensome, but it is better than excusing
“advanced” algorithms from appropriate scrutiny. Of course, rather than multiplying the
investment in computer time, the available computational resources can be divided into 10 or
20 parts. All these parts, after all, are combined in the final estimates of observable averages.
Running independent trajectories is an example of an “embarrassingly parallel” procedure,
which is often the most efficient use of a standard computer cluster. Moreover, if a simulation
method is not exploring configuration space well in a tenth of the total run time, then it probably
is not performing good sampling anyway.

How can statistical error be estimated for a single observable from independent simulations?
There seems little choice but to calculate the standard error in the mean values estimated from
each simulation using Eq. (1), where the variance is computed among the averages from the

independent simulations and  is set to the number of simulations. In essence, each
simulation is treated as a single measurement, and presumed to be totally independent of the
other trajectories. Importantly, one can perform a “reality check” on such a calculation because
the variance of the observable can also be calculated from all data from all simulations – rather
than from the simulation means. The squared ratio of this absolute variance to the variance of
the means yields a separate (albeit crude) estimate of the number of independent samples. This
latter estimate should be of the same order as, or greater than, the number of independent
simulations, indicating that each “independent” simulation indeed contained at least one
statistically independent sample of the observable.
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It is interesting to observe that, in replica exchange simulations, the physically continuous
trajectories (which wander in temperature) can be analyzed based on time-correlation
principles 10, 14. Although each samples a non-traditional ensemble, it is statistically well
defined and can be used as a proxy for the regular ensemble. A more careful analysis could
consider, separately, those segments of each continuous trajectory at the temperature of
interest. The standard error among these estimates could be compared to the true variance, as
above, to estimate sampling quality. A detailed discussion of these issues in the context of
weighted histogram analysis of replica exchange simulation is given by Chodera et al.14.

3. Overall Sampling Quality in Simulations
In contrast to measures of convergence that reflect a single local observable, e.g. a torsion
angle, some methods focus on the global sampling quality. For a simulation of a
macromolecule, the distinction would be between asking “how well do I know this particular
quantity?” and “how well have I explored the conformational space of the molecule?” The
latter question is critical, in that if the conformational space is well sampled, most physical
quantities should be known well.

This review will describe two classes of analyses of overall sampling quality: (i) qualitative
and visual techniques, which are mainly useful in convincing oneself a simulation is not
sufficiently sampled; and (ii) quantitative analyses of sampling, which estimate the “effective
sample size.”

3.1 Qualitative and Visual Analyses of Overall Sampling Effectiveness
There are a number of techniques that, although they cannot quantitatively assess convergence
or statistical uncertainty, can give tremendous qualitative insight. While they cannot tell the
user that the simulation has run long enough, they can quickly suggest that the simulation has
not run long enough. Thus, while they should not replace more rigorous methods like block
averaging and sample-size estimation, they are quite useful.

Scalar RMSD Analyses
One of the simplest methods is the comparison of the initial structure of the macromolecule to
that throughout the trajectory via a distance measure such as the root mean square deviation
(RMSD). This method is most informative for a system like a folded protein under native
conditions, where the molecule is expected to spend the vast majority of the time in
conformations quite similar to the crystal structure. If one computes the RMSD time series
against the crystal structure, one expects to see a rapid rise due to thermal fluctuations, followed
by a long plateau or fluctuations about a mean at longer time scales. If the RMSD time series
does not reach a steady state, the simulation is either a) still equilibrating, or b) drifting away
from the starting structure. In any event, until the system assumes a steady-state value – one
that may fluctuate significantly, but has no significant trend – the system is clearly not
converged. Indeed, one can argue that under that circumstance equilibrium sampling has not
yet even begun. However, beyond this simple assessment, RMSD is of limited utility, mostly
because it contains little information about what states are being sampled; a given RMSD value
maps a 3N-dimensional hypersphere of conformation space (for N atoms) to a single scalar,
and for all but the smallest RMSD values this hypersphere contains a broad range of structures.
Moreover, the limiting value for the RMSD cannot be known in advance. We know the value
should be non-zero and not large, but the expected plateau value is specific to the system
studied, and will vary not only between macromolecules, but also with changes to simulation
conditions such as temperature and solvent.
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An improvement is to use a windowed RMSD function as a measure of the rate of conformation
change. Specifically, for a given window length (e.g., 10 consecutive trajectory snapshots), the
average of the all of the pairwise RMSDs (or alternatively, the average deviation from the
average over that interval) is computed as a function of time. This yields a measure of
conformational diversity over time, and can more readily reveal conformational transitions.

All-to-all RMSD Analysis
A more powerful technique is to compute the RMSDs for all pairs of snapshots from the
trajectory and plot them on a single graph28. Figure 7 shows the results of such a plot, made
using the alpha-carbon RMSD computed from a 1.6 μs all-atom simulation of dark state
rhodopsin in an explicit lipid membrane3. The plot reveals a hierarchical block structure along
the diagonal; this suggests that the protein typically samples within a substate for a few hundred
nanoseconds, and then rapidly transitions to a new conformational well. However, with the
exception of two brief excursions occurring around 280 ns and 1150 ns into the trajectory, the
system never appears to leave and then return to a given substate. This suggests that this
simulation, although very long by current standards, probably has not fully converged.

Cluster counting
A more general approach, also based on pairwise distances, would be to use cluster analysis.
Although a general discussion of the many clustering algorithms presently in use is beyond
the scope of this manuscript, for our purposes we define clustering to be any algorithm that
divides an ensemble into sets of self-similar structures. One application of clustering to the
assessment of convergence came from Daura et al, who measured the rate of discovery of new
clusters over the course of a trajectory; when this rate became very small, the simulation was
presumed to be reasonably well converged29. However, a closer look reveals this criterion to
be necessary but not sufficient to guarantee good sampling. While it is true that a simulation
that is still exploring new states is unlikely to have achieved good statistics (at least for a
reasonable definition of “states”), simply having visited most of the thermodynamically
relevant states is no guarantee that a simulation will produce accurate estimates of observables.

“Structural histogram” of clusters
As discussed by Lyman and Zuckerman9, not only must clusters be visited, but it is important
that the populations of those regions be accurately reproduced, since the latter provide the
weights used to compute thermodynamic averages. In a procedure building on this idea, one
begins by performing a cluster analysis on the entire trajectory to generate a vocabulary of
clusters or bins. The cluster/bin populations can be arrayed as a one-dimensional “structural
histogram” reflecting the full configuration-space distribution. Structural histograms from
parts of the trajectory are compared to one computed for the full trajectory, and plotting on a
log-scale gives the variation in kT units, indicating the degree of convergence.

Principal components analysis
Principal component analysis (PCA) is another tool that has been used extensively to analyze
molecular simulations. The technique, which attempts to extract the large scale characteristic
motions from a structural ensemble, was first applied to biomolecular simulations by
Garcia30, although an analogous technique was used by Levy et al.31. The first step is the
construction of the 3N × 3N (for an N-atom system) fluctuation correlation matrix
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where xi represents the a specific degree of freedom (e.g. the z-coordinate of the 23rd atom)
and the overbar indicates the average structure. This task is commonly simplified by using a
subset of the atoms from the molecule of interest (e.g. the α-carbons from the protein backbone).
The matrix is then diagonalized to produce the eigenvalues and eigenvectors; the eigenvectors
represent characteristic motions for the system, while each eigenvalue is the mean square
fluctuation along its corresponding vector. The system fluctuations can then be projected onto
the eigenvectors, giving a new time series in this alternative basis set. The diagonalization and
time series projection can be performed efficiently using singular value decomposition, first
applied to principal component analysis of biomolecular fluctuations by Romo et al. 32.

In biomolecular systems characterized by fluctuations around a single structure (e.g.
equilibrium dynamics of a folded protein), a small number of modes frequently account for
the vast majority of the motion. As a result, the system’s motions can be readily visualized,
albeit abstractly, by plotting the time series for the projections of the first two or three modes.
For example, projecting the rhodopsin trajectory described above3 onto its two largest principle
modes yields Figure 8. As with the all-to-all RMSD plots (see Figure 7), this method readily
reveals existence of a number of substates, although temporal information is obscured. A well-
sampled simulation would exhibit a large number of transitions among substates, and the
absence of significant transitions can readily be visualized by plotting principal components
against time. It is important to note that this method does not depend on the physical
significance or statistical convergence of the eigenvectors themselves, which is reassuring
because previous work has shown that these vectors can be extremely slow to converge.1, 33

Rather, for these purposes the modes serve as a convenient coordinate system for viewing the
motions.

PCA can also be used to quantify the degree of similarity in the fluctuations of two trajectories
(or two portions of a single trajectory). The most rigorous measure is the covariance overlap
suggested by Hess 1, 34, 35

which compares the eigenvalues λ and eigenvectors v computed from two datasets A and B.
The overlap ranges from 0, in the case where the fluctuations are totally dissimilar, to 1, where
the fluctuation spaces are identical. Physically, the overlap is in essence the sum of all the
squared dot products of all pairs of eigenvectors from the two simulations, weighted by the
magnitudes of their displacements (the eigenvalues) and normalized to go from 0 to 1. Hess
used this quantity as an internal measure of convergence, comparing the modes computed from
subsets of a single trajectory to that computed from the whole35. More recently, Grossfield et
al. computed the principal components from 26 independent 100 ns simulations of rhodopsin,
and used the covariance overlap to quantify the similarity of their fluctuations, concluding that
100 ns is not sufficient to converge the fluctuations of even individual loops1. Although these
simulations are not truly independent (they used the same starting structure for the protein,
albeit with different coordinates for the lipids and water), the results again reinforce the point
that the best way to assess convergence is through multiple repetitions of the same system.
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3.2 Quantifying Overall Sampling Quality: The Effective Sample Size
To begin to think about the quantification of overall sampling quality – i.e., the quality of the
equilibrium ensemble – it is useful to consider “ideal sampling” as a reference point. In the
ideal case, we can imagine having a perfect computer program which outputs single
configurations drawn completely at random and distributed according the appropriate
Boltzmann factor for the system of interest. Each configuration is fully independent of all others
generated by this ideal machinery, and is termed “i.i.d.” – independent and identically
distributed.

Thus, given an ensemble generated by a particular (non-ideal) simulation, possibly consisting
of a great many “snapshots,” the key conceptual question is: To how many i.i.d. configurations
is the ensemble equivalent in statistical quality? The answer is the effective sample size 1, 9,
10 which will quantify the statistical uncertainty in every slow observable of interest – and
many “fast” observables also, due to coupling, as described earlier.

The key practical question is: How can the sample size be quantified? Initial approaches to
answering this question were provided by Grossfield and coworkers 1 and by Lyman and
Zuckerman 10. Grossfield et al. employed a bootstrap analysis to a set of 26 independent
trajectories for rhodopsin, extending the previous “structural histogram” cluster analysis 10

into a procedure for estimating sample size. They compared the variance in a cluster’s
population from the independent simulations to that computed using a bootstrap analysis
(bootstrapping is a technique where a number of artificial data sets are generated by choosing
points randomly from an existing data set 36). Because each data point in the artificial data sets
is truly independent, comparison of the bootstrap and observed variances yielded estimates of
the number of independent data points (i.e., effective sample size) per trajectory. The results
were astonishingly small, with estimates ranging from 2–10 independent points, depending on
the portion of the protein examined. Some of the numerical uncertainties in the approach may
be improved by considering physical states rather than somewhat arbitrary clusters; see below.

Lyman and Zuckerman suggested a related method for estimating sample size 10. Firstly, they
pointed out that binomial and related statistics provided an analytical means for estimating
sample size from cluster-population variances, instead of the bootstrap approach. Secondly,
they proposed an alternative analysis specific to dynamical trajectories, but which also relied
on comparing observed and ideal variances. In particular, by generating observed variances
from “frames” in a dynamical trajectory separated by a fixed amount of time, it can be
determined whether those time-separated frames are statistically independent. The separation
time is gradually increased until ideal statistics are obtained, indicating independence. The
authors denoted the minimum time for independence the “structural decorrelation time” to
emphasize that the full configuration-space ensemble was analyzed based on the initial
clustering/binning.

Looking to the future: Can state populations provide a “universal indicator”?
The ultimate goal for sample size assessment (and thus estimation of statistical error) is a
“universal” analysis, which could be applied blindly to dynamical or non-dynamical
simulations and reveal the effective size. Current work in the Zuckerman group (unpublished)
suggests a strong candidate for a universal indicator of sample size is the variance observed
from independent simulations in the populations of physical states. Physical states are to be
distinguished from the more arbitrary clusters discussed above, in that a state is characterized
by relatively fast timescales internally, but slow timescales for transitions between states. (Note
that proximity by RMSD or similar distances does not indicate either of these properties.) There
are two reasons to focus on populations of physical states: (i) the state populations arguably
are the fundamental description of the equilibrium ensemble, especially considering that (ii)
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as explained below, relative state populations cannot be accurate unless detailed sampling
within states is correct. Of course, determining physical states is non-trivial but apparently
surmountable 37.

We claim that if you know state populations, you have sampled well – at least in an equilibrium
sense. Put another way, we believe it is impossible to devise an algorithm – dynamical or non-
dynamical – that could correctly sample state populations without sampling correctly within
states. The reason is that the ratio of populations of any pair of states depends on the ensembles
internal to the states. This ratio is governed/defined by the ratio of partition functions for the
states, i and j, which encompass the non-overlapping configuration-space volumes Vi and V j,
namely,

(3)

This ratio cannot be estimated without sampling within both states – or effectively doing so
38, 39. Note that this argument does not assume that sampling is performed dynamically.

If indeed the basic goal of equilibrium sampling is to estimate state populations, then these
populations can act as the fundamental observables amenable to the types of analyses already
described. In practical terms, following 10, a binomial description of any given state permits
the effective sample size to be estimated from the populations of the state recorded in
independent simulations – or from effectively independent segments of a sufficiently long
trajectory. This approached will be described shortly in a publication.

One algorithm for blindly approximating physical states has already been proposed 37, although
the method requires the number of states to be input. In work to be reported soon, Zhang and
Zuckerman developed a simple procedure for approximating physical states that does not
require input of the number of states. In several systems, moreover, it was found that sample-
size estimation is relatively insensitive to the precise state definitions (providing they are
reasonably physical, in terms of the timescale discussion above). The authors are therefore
optimistic that a “benchmark” blind, automated method for sample-size characterization will
be available before long.

3.3 Analyzing non-standard simulations – e.g., replica exchange
The essential intuition regarding non-standard/non-dynamical simulations such as replica
exchange has been given in our discussion of single observables: in brief, a given configuration
in a “trajectory” may be highly correlated with much “later” configurations, yet not correlated
with intervening configurations. Therefore, a reliable analysis must be based multiple
independent simulations – which is perhaps less burdensome than it first seems, as discussed
above.

We believe such simulations should be analyzed using state-population variances. This
approach, after all, is insensitive to the origins of the analyzed “trajectories” and any internal
time correlations or lack thereof. No method that relies explicitly or implicitly on time
correlations would be appropriate.

Replica exchange simulations, because of their growing popularity, merit special attention.
While their efficacy has been questioned recently19, 40, our purpose here is solely to describe
appropriate analyses. To this end, a clear distinction must be drawn between
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“mixing” (accepted exchanges) and true sampling. While mixing is necessary for replica
exchange to be more efficient than standard dynamics (otherwise each temperature is
independent), mixing in no way suggests good sampling has been performed. This can be
clearly appreciated from a simple “thought experiment” of a two-temperature replica exchange
simulation of the double square well potential of Figure 9. Assume the two replicas have been
initiated from different states. Because the states are exactly equal in energy, every exchange
will be accepted. Yet if the barrier between the states is high enough, no transitions will occur
in either of the physically continuous trajectories. In such a scenario, replica exchange will
artifactually predict 50% occupancy of each state. A block averaging or time-correlation
analysis of a single temperature will not diagnose the problem. As suggested in the single-
observable discussion, some information on under-sampling may be gleaned from examining
the physically continuous trajectories. The most reliable information, however, will be obtained
by comparing multiple independent simulations; Sec. III.D explains why this is cost efficient.

4. Recommendations
1. General. When possible, perform multiple simulations, making the starting

conformations as independent as possible. This is recommended regardless of the
sampling technique used.

2. Single observables. Block averaging is a simple, relatively robust procedure for
estimating statistical uncertainty. Visual and correlation analyses should also be
performed.

3. Overall sampling quality – heuristic analysis. If the system of interest can be thought
of as fluctuating about one primary structure (e.g., a native protein), use qualitative
tools, such as projections onto a small number of PCA modes or all-to-all RMSD plots
to simplify visualization of trajectory quality. Such heuristic analyses can readily
identify undersampling as a small number of transitions.

4. Overall sampling quality – quantitative analysis. For dynamical trajectories, the
“structural decorrelation time” analysis 10 can estimate the slowest timescale affecting
significant configuration-space populations and hence yield the effective sample size.
For non-dynamical simulations, a variance analysis based on multiple on runs is called
for. Analyzing the variance in populations of approximate physical states appears to
be promising as a benchmark metric.

5. General. No amount of analysis can rescue an insufficiently sampled simulation. A
smaller system or simplified model that has been sampled well may be more valuable
than large detailed model with poor statistics.
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Appendix
For reference, we provide brief definitions and discussions of basic statistical quantities: the
mean, variance, auto-correlation function, and auto-correlation time.

Mean
The mean is simply the average of a distribution, which accounts for the relative probabilities
of different values. If a simulation produces a correct distribution of values of the observable
f, then relative probabilities are accounted for in the set of N values sampled. Thus the mean
〈f〉 is estimated via

(4)

where fi is the ith value recorded in the simulation.

Variance

The variance of a quantity f, which is variously denoted by , var(f), or σ2 (f), measures the
intrinsic range of fluctuations in a system. Given N properly distributed samples of f, the
variance is defined as the average squared deviation from the mean:

(5)

The factor of N −1 in the denominator reflects that the mean is computed from the samples,
rather than supplied externally, and one degree of freedom is effectively removed.

The square root of the variance, the standard deviation, σ f, thus quantifies the width or spread
in the distribution; it has the same units as f itself, unlike the variance. Except in specialized
analyses (such a block averaging) the variance does not quantify error. As an example, the
heights of college students can have a broad range – i.e., large variance – while the average
height can be known with an error much smaller than the standard deviation.

Auto-correlation function
The auto-correlation function quantifies, on a unit scale, the degree to which a quantity is
correlated with values of the same quantity at later times. The function can be meaningfully
calculated for any dynamical simulation, in the sense defined earlier, and therefore including
Monte Carlo. We must consider a set of time-ordered values of the observable of interest, so
that fj = f(t = jΔt), with j =1, 2, …, N and Δt the time step between frames. (For MC simulations,
one can simply set Δt ≡ 1). The average amount of auto-correlation between “snapshots”
separated by a time t′ is quantified by
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(6)

where the sum must prevent the argument of the second f from extending beyond N. Note that
for t′ = 0, the numerator is equal to the variance, and the correlation is maximal at the value
cf (0) = 1. As t′ increases significantly, for any given j, the later values of f are as likely to be
above the mean as below it – independent of fj since the later values have no “memory” of the
earlier value. Thus, the correlation function begins at one and decays to zero for long enough
times. It is possible for cf to become negative at intermediate times – which suggests a kind of
oscillation of the values of f.

Correlation time
The (auto-)correlation time τf quantifies the amount of time necessary for simulated (or even
experimental) values of f to lose their “memory” of earlier values. In terms of the auto-
correlation function, we can say roughly that the correlation time is smallest t′ value for which
cf (t′) ≪ 1 for all subsequent times (within noise). More quantitatively, the correlation time
can be defined via

(7)

where the numerical integration must be handled carefully due to the noise in the long-time
tail of the correlation function. More approximately, the correlation time can be fit to a
presumed functional form, such as an exponential or a sum of exponentials, although it is not
necessarily easy to pre-determine the appropriate form 41.
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Figure 1.
Widely varying timescales in n-butane. Even the simple butane molecule (upper left) exhibits
a wide variety of dynamical timescales, as exhibited in the three time traces. The slowest
timescales are evident in the C-C-C-C dihedral, the fast motions of the C-C-C bond-angle
appear to exhibit a slow undulation as well.
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Figure 2.
Slow and fast timescales are generally coupled. The plot shows a schematic two-state potential.
The y coordinate is fast regardless of whether state A or B is occupied. However, fast
oscillations of y are no guarantee of convergence because the motions in x will be much slower.
In a molecule, all atoms interact – even if weakly or indirectly – and such coupling must be
expected.
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Figure 3.
Time series for the torsion connecting the ionone ring to the chain of rhodopsin’s retinal ligand.
All three panels show the same trajectory, cut at 50 ns, 150 ns, and 1600 ns, respectively. The
black line in the bottom panel shows the data smoothed over a 10 ns window.
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Figure 4.
Cartoon of a landscape for which dynamical simulation is intrinsically difficult to analyze. As
the barrier between the states gets higher, the small state requires exponentially more dynamical
sampling, even though the population may be inconsequential. It would seem that, in principle,
a cutoff should be chosen to eliminate “unimportant” states from analysis. In any complex
molecular system, there will always be extremely minor but almost inaccessible basins.

Grossfield and Zuckerman Page 21

Annu Rep Comput Chem. Author manuscript; available in PMC 2010 May 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
State autocorrelations computed from 100 ns butane simulations. The central torsion was
labeled as either trans, g+, or g−, and the autocorrelation function for presence in each state
was computed.
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Figure 6.
The block averaging procedure considers a full range of block sizes. Small blocks will tend to
be highly correlated with neighboring blocks, whereas blocks longer than important correlation
times will only be weakly correlated. The block averaging analysis implicitly detects such
correlations in the BSE plot at right. The true statistical uncertainty (standard error) is obtained
when BSE reaches a plateau in the right plot, reflecting essentially independent blocks. Note
that the correlation time of ~100–200 psec essentially can be “read” from the BSE plot. The
BSE plot was calculated from 50 nsec of data.
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Figure 7. All-to-all RMSD for rhodopsin alpha-carbons
Using the color scale at right, this matrix visually indicates time intervals over which
configurations are similar – i.e., blue-violet in color.
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Figure 8.
Projection of rhodopsin fluctuations onto the first two modes derived from principal component
analysis. As with Figure 7, this method directly visualizes substates in the trajectory.
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Figure 9.
A cartoon of two states differing only in entropy. Generally, in any simulation, energetic effects
are much easier to handle than entropic. The text describes the challenge of analyzing errors
in replica-exchange simulations when only entropy distinguishes two energetically equal
states.

Grossfield and Zuckerman Page 26

Annu Rep Comput Chem. Author manuscript; available in PMC 2010 May 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


