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ABSTRACT: In the last years, a growing interest has been
gathering around the ability of Molecular Dynamics (MD) to
provide insight into the paths of long-range structural commu-
nication in biomolecules. The knowledge of the mechanisms
related to structural communication helps in the rationalization
in atomistic details of the effects induced by mutations, ligand
binding, and the intrinsic dynamics of proteins. We here pre-
sent PyInteraph, a tool for the analysis of structural ensembles
inspired by graph theory. PyInteraph is a software suite de-
signed to analyze MD and structural ensembles with attention
to binary interactions between residues, such as hydrogen
bonds, salt bridges, and hydrophobic interactions. PyInteraph
also allows the different classes of intra- and intermolecular
interactions to be represented, combined or alone, in the form of interaction graphs, along with performing network analysis on
the resulting interaction graphs. The program also integrates the network description with a knowledge-based force field to
estimate the interaction energies between side chains in the protein. It can be used alone or together with the recently developed
xPyder PyMOL plugin through an xPyder-compatible format. The software capabilities and associated protocols are here
illustrated by biologically relevant cases of study. The program is available free of charge as Open Source software via the GPL v3
license at http://linux.btbs.unimib.it/pyinteraph/.

1. INTRODUCTION

The network paradigm has been extensively used to describe the
structure, topology, and dynamics of proteins.1 Intramolecular
noncovalent interactions between a pair of residues in a protein
are crucial in determining protein structure and dynamics, and
they can be collectively represented in the form of a network,
namely a Protein Structure Network (PSN).2−4 Studies in the
PSN field pointed out the role of hub residues and other central
elements in the PSN that can be connected to protein function,
allosteric regulation, signal transduction, protein stability, and the
effects induced by post-translational modification or binding
with other biological partners.
In a PSN, the nodes of the network are generally the side

chains of the protein residues, even if individual atoms can also be
used. Edges in the network can be defined with different strat-
egies, as for example distances between the side chains, atomic
contacts, van der Waals interactions, etc., ...1,3,5 Alternatively,
interaction energy can be estimated with different methods, and
the network can be constructed based on the interaction energy
between each pair of residues in the protein.6−9

Protein structure networks are “small-worlds”.10−13 This is a
crucial feature suitable for the fast transmission of conforma-
tional changes at distal sites. Indeed, in the small-world of PSNs,
the amino acids can communicate with each other by the shortest

paths available. Moreover, PSN are characterized by a small
number of hubs compared to other kinds of networks, and the
hub residues have generally an important role for protein sta-
bility or function.1,12,14 The “signal” in protein structure during
dynamics can propagate using multiple paths that have often
nodes in common.15−17

Web servers, programs, or plugins are available to study
protein networks from protein structure files in the Protein Data
Bank (PDB), as for example the RING server,18 RINalyzer,19

GraProStr,20 and SPACER.21 Nevertheless, it is known that
protein structures are better described as an ensemble of different
conformational states in a dynamic equilibrium that can be per-
turbed by the binding with biological partners, post-translational
modifications, or mutations.22,23 Indeed, both experimental and
computational methods that provide a structural ensemble of
conformations in atomistic details, as for example NMR24−27 or
Molecular Dynamics (MD),28−30 can be integrated to methods
inspired by graph theory to investigate long-range structural
communication and allostery. For example, the potential of
NMR-derived parameters, as chemical shifts, has been exploited
to derive paths of allosteric communication in proteins.25,26,31,32
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Not only, also contact networks involving conformationally
heterogeneous residues can be directly detected by X-ray
crystallographic data.33 Thus, the progress in the PSN field and
their description in a dynamic framework are likely to enrich the
knowledge on functional conformational changes in proteins.
To identify paths of long-range communication in structural

ensembles of proteins, a number of methods is currently em-
ployed.9,34−41 Recently, softwares to calculate PSNs or to de-
scribe structural communication in protein ensembles have been
also made available. Some of them are mainly inspired by con-
cepts from engineering, and they describe the protein as a
mechanical construct rather than a chemical molecule. In this
class, we can find the so-called force distribution analysis (FDA),
which is based on the analysis of forces intercurring between
atoms.42 FDA is generally able to identify structural communi-
cation even in stiff structures in which communication is very
subtle and occurs without evident atomic displacement. One
limitation of the method is that it can be applied to those ensem-
bles for which acting forces can be calculated, as for example
MD-derived ensembles. Another very recent package is
GSATools,43 which describes the structures of the ensemble in
terms of a structural alphabet. The alphabet describes 25 canon-
ical states of four-residue protein fragments. Once each confor-
mation is encoded as a string, the string collection can be further
analyzed to extract information about paths of communication.
PSN-derived methods are implemented for example in the

Wordom toolkit for MD analysis44 or in the recently released
PSN-ensemble.9 Indeed, this class of PSN approaches is based on
the description of the more persistent atomic contacts between
side chain atoms during dynamics to define nodes and connec-
tions in the graph. The aforementioned PSN-based methods
consider the atomic contacts and thus account for van der Waals
effects, which are often playing a crucial role in long-range com-
munication.3 Nevertheless, they do not discriminate the different
chemical-physical properties of the residues. Thus, graph analysis
approaches applied to the network of intramolecular interactions
(IIN), describing the class of most relevant weak interactions
occurring in proteins, may finely complement the PSN infor-
mation. Indeed, weak interactions in proteins, as for example
hydrogen bonds, can be important components of the intra- and
intermolecular communication. To have a comprehensive view
on protein structural communication, IIN description can be
integrated with the PSN approaches based on noncovalent
atomic contacts.9,43,44

In this scenario, we here provide a versatile Python tool
(PyInteraph) that is tightly connected to the MDAnalysis
package45 to describe IIN from structural/dynamic ensembles.
The program also allows each class of weak interactions to be
separately described or integrated in a macronetwork of inter-
actions. Indeed, a remarkable feature of PyInteraph is that,
similarly to the PSN methods mentioned above, it employs
information on the atomic coordinates to build a network
representation. On the other side, differing from the classical
PSNs, it does this by calculating specific classes of interaction,
which are the ones more commonly found in protein ensembles
and important for protein architecture and dynamics.
Moreover, a method to provide a description of the interaction

energy by pairs of residues was included in PyInteraph, imple-
menting the Hunter statistical potential recently developed by
Schreiber’s group46,47 and here used for the first time to describe
interaction networks. This potential allows us to estimate the
interaction energy between the side chains of each pair of protein
residues, using four-distances defined between two sets of atoms

each of them belonging to one of the residues in the pair.
PyInteraph also allows performing networks analysis (i.e., calcu-
lation of hubs, connected components, paths of communication)
on the interaction graphs.
PyInteraph outputs have been made compatible with our

recently developed PyMOL (https://www.pymol.org) plugin,
xPyder,48 to visualize the results on a reference three-dimensional
(3D) structure. Nevertheless, since xPyder was conceived to plot
only a pairwise relationship between Cα atoms, we also included
in PyInteraph a PyMOL plugin, interaction_plotter to plot
the results on a reference 3D structure considering each atom
involved in the interaction. This is especially important for
hydrogen bonds. We here illustrate PyInteraph, along with some
applications (as examples) to MD structural ensembles in the
attempt to complement and rationalize available experimental
data on different target proteins.49−53

2. METHODS
2.1. Class of Interactions That Are Employed in

PyInteraph. Three classes of interactions are included in the
program: hydrophobic interactions, salt bridges, and hydrogen
bonds (H-bonds). For each class geometric criteria are defined to
evaluate if the interaction is present between selected pairs
of atoms or atom groups in a given protein conformation. The
persistence for each pairwise interaction is then calculated as the
fraction of the number of structures of the ensemble in which the
interaction was observed.
The criteria to define a pair of interacting residues for each

structure can be modified by the user for each class of inter-
actions. Nevertheless, we encourage the user to refer to the
literature in terms of relevant cutoffs to define an interaction and
to use criteria that can be justified and find a fundament in the
structural biology field.
For hydrophobic contacts, the interaction between two resi-

dues is included if the center of mass of the side chain of the two
hydrophobic residues is found within 5 Å of distance as a default.
Default residues to be considered for hydrophobic interactions
are Ala, Ile, Val, Leu, Phe, Met, Trp, and Pro. The list can be
modified by the user to include a specific subset of residues for
the analysis.
Since centers of mass are considered for the analysis, the mass

of each single atom has to be taken into account. Each MD force
field is known to have different mass definitions, thus the user has
the opportunity to specify one of the several mass databases that
come prepackaged with PyInteraph, belonging to the GROMOS,
AMBER, CHARMM, ENCAD, and OPLS families. This is espe-
cially important when considering united-atom force fields, such
as GROMOS. Finally, if nonstandard atoms are used and their
masses are not specified in the mass repository, their atomic
masses are guessed on the base of the atom names and the
program provides a warning message.
For salt bridges, all the distances between atom pairs belonging

to two “charged groups” of two different residues are calculated,
and the charged groups are considered as interacting if at least
one pair of atoms is found at a distance shorter than 4.5 Å as a
default. In Asp and Glu, the atoms that form the carboxylic group
are considered (including both the carbon and the oxygen
atoms). For Lys, Arg, and His (only if protonated) the NH3

+, the
guanidinium group, and the imidazole ring are employed,
respectively. In the case of His, PyInteraph determines if the
hydrogen is presented at both the Nε and Nδ of the His residue
(i.e., HISH atom type in several force fields) from the input
topology. Otherwise, all histidine residues are considered as
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neutral. Moreover, in the default charged groups the N- and C-
terminal of the protein are positively and negatively charged,
respectively. Those default charged groups are customizable by
the user.
The module for salt-bridge interactions also allows the calcu-

lation of repulsive interactions (i.e., positively charged vs posi-
tively charged or negatively charged vs negatively charged
residues). In the .ini configuration file, the positively charged
groups have to be defined as ‘p’ and the negatively charged as ‘n’.
A H-bond is identified when both the distance between the

acceptor atom and the hydrogen atom is lower than 3.5 Å and the
donor-hydrogen-acceptor atom angle is greater than 120°. These
default parameters can be modified by the user. As a default, both
side chain and main chain H-bonds are included. The groups can
be modified by the user allowing to select only side chain-side
chain, main chain-main chain, or main chain-side chain H-bonds,
and the acceptor and donor atoms have to be specified in the
configuration file.
2.2. Calculation of the Intra- or Intermolecular

Interaction Networks (IIN) for Individual Classes of
Interaction. At first, the program identifies all the pairwise
interactions for the selected class (i.e., hydrophobic interactions,
H-bonds, salt bridges), and it associates with each pair a value of
persistence of the interaction in the ensemble. Afterward, these
interactions are merged together in an Intra- or Intermolecular
Interaction Network (IIN) that aims at providing an integrated
view of the interaction class in the structural ensemble. Different
IINs can be defined for each interaction class, as well as they can
be then combined in a more complex graph, as explained in
Section 2.4. In details, the IIN is defined as a graph, in which
residues are the nodes of the graph and each edge represents a
specific interaction between them. Notably, the network is
defined as having one edge per residue pair. Indeed, only one
edge is considered in the case of pair of residues with multiple
atoms involved in the interaction. Starting from the definition of
the different interaction classes explained above (Section 2.1),
it is necessary to define one persistence value per residue pair
(i.e., the edge weight for that interaction). This is especially
relevant for H-bonds since one or more of these interactions may
simultaneously exist between two residues. Considering how the
charged groups for salt bridges are conceived, the same issue can
occur if positively or negatively charged residues are located at
the N- and C-terminal extremities, respectively, and both the side
chain and the terminal group are interacting with another
oppositely charged amino acid in the protein. In these cases,
PyInteraph calculates, for each conformation in the structural
ensemble, an edge between two given residues if at least one
atomic interaction of the selected class is identified. The per-
sistence value is then calculated as the ratio between the number
of structures in which an edge was identified (i.e., in which at least
one interaction was present between the two residues) and the
total number of structures in the ensemble. The edge weight of
the IIN between two given residues is thus calculated so that it
may or may not coincide with the edge value for the individual
interatomic interaction, depending on the number of confor-
mations of the ensembles in which the interatomic interactions
between the two residues are simultaneously or exclusively
present. For instance, if a pair of residues can form up to two
H-bonds involving different atoms of each residue and these
H-bonds are correlated in the structural ensemble, they will always
be identified in each conformation and the edge value of the
IIN will coincide with the value of their individual persistence.
On the other hand, if the two aforementioned H-bonds are

completely uncorrelated, they will never be present in the same
structure, and the persistence of the IIN edge will be equal to the
sum of their persistency values. The hydrophobic-interaction
networks do not present this kind of issues since we defined them
on the base of pairwise interactions. Indeed, in hydrophobic
interaction networks, the distance between the centers of mass of
the residue side chains is employed, and there are no issues
related to contacts between multiple atoms of the residues
involved.

2.3. Calculation of the Persistence Cutoff for Signifi-
cant Interactions. PyInteraph procedure requires the user to
filter the interactions in the individual IIN to exclude very
transient interactions, which cannot account for important
structural or functional features and are likely to be related, for
example, to the sampling of rare conformations during dynamics
under the force-field description. We thus implemented the so-
called pcrit calculation, which is derived from known properties of
PSNs3,54−56 and is based on the size of the largest interaction
connected component (i.e., cluster) identified at different persis-
tence values. In graph theory a connected component is defined
as a subgraph in which a path exists between any two vertices, but
no paths exist to any other vertices of the main graph, meaning
that there are no edges connecting two connected components.
The size of the largest cluster in the graph is generally employed
to understand the nature and properties of graphs.3,54−56 In the
case of protein structures, it has been also observed that a critical
value exists below which the residues in the PSN are almost
completely connected (resulting thus in just one large cluster),
and above this critical value the PSN splits into smaller clusters.56

The transition is very sharp and occurs on a narrow range of
cutoffs, and it is generally used to define the threshold of sig-
nificance (Icrit) for the edges in the graph. Analyses of PDB
structures showed that the Icrit falls in a narrow range for proteins
of different sizes and folds, suggesting that it can be used as a
general method for threshold detection.
Since PyInteraph uses atomic contacts selected on the base of

noncovalent interactions, it provides a graph with weighted
edges, which is conceptually very similar to the resulting graph of
a classical PSN. The f ilter_graph tool of PyInteraph thus calcu-
lates a collection of graphs from the interaction map of the same
data set (i.e., the same structural ensemble) provided in input
(i.e., the individual IIN) for different persistence thresholds
(called pmin for consistency with the Imin by Brinda et al.56)
(Figure 1, lower panel) and calculates for each of them the size of
the largest connected component (i.e., largest cluster). Each
graph is then filtered by removing all the edges that have a weight
lower than the chosen pmin. The analysis is iteratively carried out
for increasing pmin values. As a result, each graph derived at a
specific pmin value will feature a different number of edges. For
each of these graphs the clusters are calculated and the size of the
largest cluster will thus decrease (or at most remain equal) with
increasing pmin values (i.e., increasing thresholds) since more and
more edges will be filtered out. The significance threshold for
interaction persistence can be then calculated as the value at
which a sharp transition in the size of the largest cluster occurs
(pcrit). Choosing pcrit as the threshold value allows removingmany
low-value edges that would increase noise and connect all the
clusters into a single one, as would happen if no threshold is used.
Conversely, keeping only very high-value edges would affect the
overall network structure, leaving only highly interconnected
clusters. Choosing the pcrit value for analyses allows us at the same
time to filter out meaningless interactions and to maintain the
network structure.
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2.4. Calculation of the Macro-IIN. Since each of the
individual IIN is constructed in a similar way (i.e., they have a
similarly shaped adjacency matrix), they can be combined to
form a comprehensive graph (macro-IIN) retaining contribu-
tions from the different single graphs. To select the interactions
that have to be integrated in the macro-graph, a cutoff of

interaction persistence has to be selected by f ilter_graph, as
explained in Section 2.3 for each individual IIN.
In the selection of pairwise connections to include in the IIN

matrix, two residues are considered as connected byH-bonds if at
least one H-bond is present between two atoms of those residues.
The full macro-IIN is then computed building an unweighted

Figure 1.General workflow of the PyInteraphmain tools. The lower panel also shows an example of the evolution of the size of the largest cluster in the
graph as a function of the pmin value.
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graph in which an edge between two residues (nodes) is present
if an interaction of at least one of the three classes existed
between them. Since the macro-IIN is unweighted, it has to be
used only to provide an overall view of the more persistent inter-
actions in the MD ensemble; it cannot be used itself for network
analysis. PyInteraph then also includes a procedure to weight the
macro-IIN according to the energy map values (defined in
Section 2.5), which is the only macro-IIN that can be used for
graph-analysis purposes.
2.5. Interaction Energy Maps. PyInteraph integrates a

module to estimate the interaction energy between a pair of side
chains, employing a component of a knowledge-based potential,
called Hunter,46 which is based on a four-distances description
of the side-chain interactions.47 Briefly, the potential has been
defined on sets of four interatomic distances. These distances
have been defined independently for each possible pair of resi-
dues (except glycine) by selecting two representative atoms per
residue pair and calculating the four inter-residue distances
between them. This allowed the possibility that the same amino
acid is in contact with different partners via different atom pairs.
The representative pairs were chosen as those having the largest
number of contacts in a data set of 9394 high-resolution protein
structures from the Protein Data Bank (PDB).46 Once the four-
distances set has been defined for four atom pairs, four-
dimensional (4D) histograms with a constant bin size of 0.5 Å
along each dimension from 0 to 10 Åwere built, bymeasuring the
relevant distances in the available structural data set to estimate
the approximate probability distributions, followed by a smooth-
ing step. The “pseudo-energy” values for each interaction are
then calculated using the reversed Boltzmann equation

Δ = −E k T P Plog( / )b real rand

where

= | *P P dist AA P AA({ } ) ( )x

Px({dist}|AA) is the probability of observing the four-distance
combination for a given residue pair, and P(AA) is the probability
to observe a side-chain contact for a given pair of residues in
protein structures. Preal refers to the distribution encoded in the
4D histogram for the target pair of residues, while Prand is built
upon a random model which represents a scenario in which the
side-chain conformations are not dictated by forces characteristic
of a real protein. kbT is defined as unity by default according to
ref 47, but its value can be modified by means of a simple
command-line option. The user can change the value to explicitly
take into account the temperature at which the structural
ensemble was derived and a specific value for the Boltzmann
constant (kb) to express the pseudoenergy in the desired unit.
The interaction pseudoenergy is calculated by PyInteraph for

all the structures of the ensemble and then averaged for each
residue pair. In this way, a single value per residue pair is ob-
tained, resulting in an interaction matrix that can be used as a
graph adjacency matrix, which features a single value per residue
pair. In principle, the pcrit analysis carried out by the f ilter_graph
module was designed to deal with the interaction persistence in
the aforementioned IIN graphs but can be also applied to the
network derived by interaction energies. Moreover, the macro-
IIN described in Section 2.4 can be combined to the energy map,
so that the pseudoenergy values for each pair of residues can be
used as weights for the edges between the nodes of the macro-
IIN.
2.6. Graph Analysis. The PyInteraph package includes also a

network analysis module, named graph_analysis to postprocess

the IINs or the weighted macro-IIN. The program is then also
able to work on any graph provided in the adjacency matrix file
format compatible with PyInteraph. The graph_analysis tool
performs three different types of analysis on the selected graph.
First, it identifies highly connected residues on the network, also
called hubs. It does so by calculating the number of connections
for each node and considering as hubs only those nodes having a
number of connections higher than or equal to a user-selected
threshold k. In PSN applications, it has been shown that hubs are
generally residues connected by more than 3 or 4 edges,1,12,14

so we recommend to employ these values as thresholds.
graph_analysis not only defines the hubs but also provides for
each of them the connectivity degree, which can be useful infor-
mation to compare networks derived for example from different
protein variants. Second, graph_analysis identifies connected
components, which are isolated regions of the graph, as detailed
in Section 2.3. Third, graph_analysis can calculate the shortest
paths between two specified residues in the graph, using a variant
of the depth-first search algorithm. While the default output is
textual only, providing a reference PDB file to the script allows
graph_analysis to write information about the identified con-
nected components or hubs in the B-factor field of the input PDB
file. Also, the identified paths can be independently saved as
adjacency matrix files that can then be plotted by xPyder PyMOL
plugin.48

2.7. MD Simulations of Target Proteins. Most of the
simulations employed here as cases of study are taken from
already published works, as described in the following. In partic-
ular, the 100 ns MD runs of wt and V16A Aeropyrum pernix
Acylaminoacyl peptidase (ApAAP) are described in ref 40. The
200 ns concatenated trajectory of the cold-adapted alkaline
phosphatase from Vibrio proteinase (VAP) is described in ref 57.
The intrinsically disordered domain of Ataxin-3 (AT3182−291)
was investigated collecting overall 500 ns of MD in the recently
published work by Invernizzi et al.51 The case study of the
interaction between a phosphovariant of Cdc34 and ubiquitin
(Ub) in 40 ns MD simulations is described in ref 58.
Additional simulations were included in the present manu-

script and not published elsewhere, and they were carried out
by GROMACS v.4.6 (www.gromacs.org). In particular, for p53,
we used a subset of MD simulations collected for a manuscript
presently under preparation. The X-ray structure of the p53
DNA-binding domain (DBD, PDB entry 1TSR, chain B, residues
95−289)59 in complex with DNA (PDB entry 1TSR, chains E
and F) was used as starting structure for the simulations. The
simulations were carried out using CHARMM27 (CHARMM22
with the CMAP) for 100 ns in the NPT ensemble at 300 K and
1 bar. Electrostatic and van derWaals interactions were truncated
at 9 Å.
The E2 enzymes Ubc1 (PDB entry 1FXT, chain A) was simu-

lated for 50 ns with the CHARMM22* force field in the NPT
ensemble at 300 K and 1 bar. Electrostatic and van der Waals
interactions were truncated at 10 Å.
All the p53 and E2 simulations were carried out using periodic

boundary conditions and a dodecahedral box and TIP3P water
models (www.gromacs.org). The LINCS algorithm60 was used
to constrain the bond lengths of heavy atoms, allowing the use of
a 2 fs time-step. Long-range electrostatic interactions were calcu-
lated in all the cases using the Particle-Mesh Ewald (PME) sum-
mation scheme.61
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3. RESULTS AND DISCUSSION

3.1. PyInteraph. 3.1.1. PyInteraph Overview. The PyInter-
aph package allows the calculation of intra- or intermolecular
interactions, such as salt bridges, hydrogen bonds, and
hydrophobic interactions in structural ensembles (Figure 1). A
knowledge-based potential is also available to estimate the
interaction energy between residue side chains. The calculated
interactions can be merged in networks of interactions of a
specific class (sb-IIN, hb-IIN or hc-IIN, for salt bridges, H-bonds,
and hydrophobic interactions, respectively) or in a macro-IIN
(see Sections 2.2 and 2.4, respectively). The outputs can be
analyzed with methods inspired by graph theory by the tool
graph_analysis. In particular, the graph_analysismodule calculate
several features of the calculated IINs, such as hubs, connected
components and paths between pairs of residues (see Section 2.6
for details).
The package includes user-editable configuration files and

support files, as those containing the per-atom mass infor-
mation on many popular MD force fields, the definition of
charged groups, of acceptor and donor atoms for H-bonds, and
the definition of the knowledge-based potential Hunter.46,47

The software suite is written in Python and C. It is mainly
composed of a Python library, which can be integrated in external
code, and few front-end scripts that perform the main calcu-
lations and further analysis. The most time-consuming parts of
the calculations are handled by a highly efficient C library, which
is wrapped for the Python interpreter using the Cython pro-
gramming language.
The PyInteraph main script is a command-line tool that per-

forms most of the analyses on the protein ensembles, outputting
different files which contain data both for the single interac-
tions and the interaction graphs, as detailed in Section 2.3. The
f ilter_graph script can be used to postprocess the graph f iles
obtained by the main program. This module allows the user to
deal with the estimation of a significance threshold for the
persistence of the interactions and to filter the graph of interest
(both the individual or the macro-IIN) according to the selected
threshold, as well as to prepare the macro-IIN merging the indi-
vidual IIN graphs.
Finally, the PyInteraph package includes a basic PyMOL plugin,

called interaction_plotter, which has been designed to map the
identified interactions on the 3D structure of the target proteins.
3.1.2. System Requirement and Installation. PyInteraph

requires a working installation of Python 2.7 and few freely avail-
able scientific open source libraries, which are easily installed on
the most common operating systems, such as OSX and Linux
distributions. The required libraries include MDAnalysis 0.7.7,
Numpy 1.6, Networkx 1.5, Scipy 0.10.1, and Matplotlib 1.1. The
interaction_plotter PyMOL plugin requires a complete PyMOL
installation, version 1.3 or above. We are aware of the fast evo-
lution of Python, thus we are willing to support and update our
software so that it will remain compatible with as many future
and present Python versions as possible. Indeed, a transition to
Python 3.3 is planned as soon as full compatibility of the libraries
required for PyInteraph will be available.
The installation of PyInteraph is performed through a distutils

setup script, which can install the novel Python module, its C
extension and the front-end scripts. The location of the
PyInteraph directory can be stored in a specific system variable
that the program uses to automatically identify the localization of
configuration and support files. Finally, the interaction_plotter

plugin must be installed in PyMOL by means of the plugin
handling interface.

3.1.3. Input Format. PyInteraph is able to analyze structural
ensembles from several different sources thank to its tight con-
nection with MDAnalysis,45 as described above. It supports the
most common MD trajectory formats, such as GROMACS,
CHARMM, NAMD, LAMMPS, and AMBER file formats. It
supports the most common plain text topology and coordinate
formats from the aforementioned programs, such as .gro, .crd,
.xyz, and .pdb files. Single and multiple-model PDB files can also
be provided to the script as trajectory files to perform the graph
analysis on individual structures, NMR-derived structural
ensembles or any other ensembles of structures derived by com-
putational or experimental methods.
For the proper functionality of the program, the trajectories

should be formatted so that the molecules under analysis are
contiguous (i.e., the periodic boundary conditions, if present,
should be removed). Moreover, the program should be used on
protein ensembles reflecting the sampling of a relatively local
conformational basin, so that meaningful averages can be ex-
tracted. This is especially important in the case of the graph
derived applying the knowledge-based potential, due to its
high sensitivity to the local structural features of the protein
conformations.46,47

3.1.4. Output Format and in-Depth Analyses. PyInteraph
provides two main outputs for the individual IIN. (i) An
interaction f ile includes a list of each pairwise interaction and the
associated persistence in the structural ensemble. It contains the
chain ID, residue number, residue ID, and the corresponding
atoms or groups for each of the residue in a pair. The interaction
f ile can be used to map on the 3D protein structure the inter-
actions and their network by a PyMOL plugin (interaction_plotter),
which is included in the PyInteraph software package. Inter-
actions are plotted by connecting the relevant atoms or groups by
sticks of thickness and shade of colors proportional to the
interaction persistence. (ii) The second format, namely graph
f ile, is a simple ASCII square matrix of persistence values
separated by spaces. It represents the adjacency matrix for the
macro- or the individual IIN graphs. It has been designed to be
fully compatible with the xPyder plugin48 that provides an
interface to visualize any set of structural data that can be
represented in a matricial format.

3.1.5. Customizability and Configuration Files. PyInteraph
has been designed to support the most common residue types
and classes of interactions. The software also supports new force-
field masses, charged groups, noncanonical residues (e.g.,
residues modified by post-translational or chemical modifica-
tions), and nonprotein molecules thank to an user-editable con-
figuration file (.ini file).
The user can also modify several parameters of the program by

command-line arguments, such as distance, angle, and persis-
tence cutoff values. For hydrophobic interactions, the user can
specify the list of residue to include. An alternative application of
this tool is the use of all the 20 amino acids to calculate an inter-
residue contact map. The information about force-field masses is
stored in files, which are written in the standard JSON format, so
that support for new molecules and force fields can be easily
added. It is also possible to generate the mass-files from the
standard GROMACS force-field files using a provided script
(parse_masses).
In summary, the possibility to customize the configuration files

and the program options improve the flexibility of the tool,
allowing the user to include in the analysis nonstandard residues,
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generic customized nonprotein ligands, and force-field masses of
different sources.
3.2. Applications. Some practical examples are discussed in

the following to better illustrate the capabilities of PyInteraph.
The applications here discussed are not exhaustive of the use of
the package and its tools but are intended to provide some cases
of study and inspiration for the user in terms of how the results
can complement or integrate experimental data. Indeed, a “real-
life” application can be the identification of persistent inter-
actions in an ensemble framework for a target residue or a group
of residues for experimental research, as well as to estimate the
associated interaction energy. This can be useful, for example, to
design experimental mutagenesis. It can also provide a structural
rational on the local and long-range effects observed experi-
mentally upon a mutation or protein modification, for example
comparing with PyInteraph structural ensembles (experimental
or simulated) of both wild-type and mutant/modified variants.
3.2.1. Application-1: Identify Relevant Pairs of Interactions

in Structural Ensembles. PyInteraph has been mainly designed
to provide an overall description in terms of networks of intra-
and intermolecular interactions in a structural ensemble (in
particular MD ensembles but not only). Nevertheless, a first and
obvious application of the tools is the evaluation of a specific
pairwise interaction or a well-defined group of local interactions.
Indeed, once the interaction f ile with the persistence is calculated,
the estimation of the target interactions can be derived directly
from this file, where all the pairs of atoms/residues involved
in the selected interaction class are listed along with their
persistences. The format of these outputs is straightforward
to both read and parse. This output can also be used by the
interaction_plotter plugin to visualize the networks. Moreover,
the graph f ile can be directly used as input file for xPyder48

exploiting the filtering option of this plugin. The target inter-
actions can thus be mapped on the 3D protein structure. To
better illustrate this application, we here reported some cases of
biologically relevant pairwise or localized intramolecular
interactions, illustrating examples for H-bonds and hydrophobic
interactions.
The hydrophobic interactions generally play a crucial role in

the stabilization of the protein core and in the maintenance of the
3D structure and stability.62 Hydrophobic and aromatic residues
are usually highly packed inside the protein and shielded from the
solvent, as in the p53 DNA Binding Domain (DBD).59 Never-
theless, the p53-DBD has a β-sandwich fold, but it is naturally
unstable and melts slightly above the body temperature, be-
coming prone to be inactivated by oncogenic mutations.63 It has
been proposed that p53-DBD has evolved to be naturally un-
stable, and this is essential for its activity and regulation.50 NMR
experiments showed several buried polar groups in p53-DBD,
especially tyrosine residues that can be flexible and involved in
the formation of suboptimal H-bond networks, determining its
instability.50We here employed PyInteraph to investigate the role
of those tyrosine residues in the stabilization of the p53-DBD,
calculating the hydrophobic and H-bond interactions and their
local networks from an MD ensemble and postprocessing the
data with xPyder.48 The pcrit functionality of f ilter_graph was used
to define a threshold of significance for the interaction per-
sistence (20%). Our analyses shows a stable network of hydro-
phobic interactions (Figure 2-A1) in agreement with exper-
imental data that suggest its critical role in the formation of the
protein core.50 Moreover some Tyr residues (Tyr-163, Tyr-205,
Tyr-236) turned out to be localized in key positions in the
structure and probably involved in interactions between the

β-sheets, L2 and L3 loops (Figure 2-A2), in agreement with
the experiments.50 Indeed, the hb-IIN calculated with
PyInteraph and exploiting the interaction_plotter plugin shows
that a highly persistent H-bond (more than 90%) is present
between Thr-253 Hγ2 and Tyr-236 Oμ in our MD ensemble in
agreement with the main conformers from the NMR ensemble
(Figure 2A-3).50

Another example of functionally relevant H-bonds here pro-
vided is related to the E2 ubiquitin (Ub)-conjugating enzymes.
E2 enzymes have a central role in the Ub-mediated proteolysis of
proteins as they transfer Ub or Ub-like proteins to the target sub-
strate.64 Despite being extensively investigated, their catalytic
mechanism remains elusive, and it is mainly related to a con-
served His-Pro-Asn motif (HPN) upstream of the catalytic
cysteine, which also exhibited different arrangements in the
solved X-ray structures of E2s. A recent work, in which chemical
shifts data, temperature coefficient measurement derived for the
human E2 HIP2, along with analysis of all the known structures
of E2 were integrated, identified a conserved H-bond in the HPN
motif. The H-bond involves the imidazole ring of His and the
amide proton of the backbone of HPNAsn. It is a critical element
for the orientation of the His of HPN.49 Herein, we calculated by
PyInteraph the H-bond network on a 50 ns MD simulation of
Saccharomyces cerevisiae Ubc1, an E2 enzyme homologous to
HIP2. In particular, we employed the interaction_plotter plugin to
visualize the H-bond networks at atomic level (Figure 2-B1). Our
results show the presence of a highly persistent (100%) H-bond
between the amide proton of the Asn and the imidazole ring of
the His in the HPN motif (Figure 2-B2) in agreement with the
recent experimental findings, further supporting the relevance of
this interaction for the proper orientation of the His ring.49

3.2.2. Application-2: Networks of Salt Bridges or Hydrogen
Bonds. Electrostatic interactions, and salt bridges in particular,
may play a crucial role in protein stability, and they can exert both
local and long-range effects.65,66 Salt bridges are indeed highly
flexible and cooperatively organized in networks across the
protein structure. Differences in salt-bridge networks have been
often associated with enzymes from differently temperature-
adapted organisms.67 In this context, the intramolecular inter-
actions are only one side of the story. Indeed, proteins involved in
many fundamental processes as well as many extremophilic
enzymes so far identified are organized in intermolecular com-
plexes, i.e. multimeric.
Here we present an example of a salt-bridge based IIN in the

dimeric structure of the cold-adapted phosphatase from Vibrio
proteinase (VAP).57 In particular, we calculated all the salt bridges
both intra- and intersubunits, and we built a network from those
interactions by PyInteraph. The pcrit calculation was also em-
ployed to define a significant threshold of interaction persistence
of 20%. The sb-IIN was then analyzed with xPyder48 filtering
tools, focusing the attention on the ion pairs at the interface
between the two monomers (Figure 3A). It turned out, in
agreement with the previously published results,57 that the en-
zyme is characterized by a low number of dispersed electrostatic
interactions at the interface, a typical feature of cold-adapted
enzymes.67

Salt bridges and electrostatic interactions may also play a role
for structural and functional properties of proteins belonging to
the class of Intrinsically Disordered Proteins (IDPs).68 In this
context, we recently investigated the conformational ensemble of
the disordered region of ataxin-3 (AT3182−291) by biophysical
spectroscopies and MD simulations.51 It turned out that the
domain can populate two different conformational states with a
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Figure 2. A) Hydrophobic interactions involved in the core of the p53 DNA binding domain (DBD). The hydrophobic interactions of the MD
ensemble of p53 DBD were calculated with PyInteraph and then postprocessed with xPyder filtering interactions with persistence lower than 20%. The
p53 DBD structure is shown in blue cartoon. The Cα atoms of the residues involved in the interactions and of the tyrosines are indicated as yellow and
red spheres, respectively (1,2). The hydrophobic interactions are represented as cylinders connecting the Cα atoms of residues and their thickness is
proportional to the persistence value (A1). Zoom on the interactions that are suggested to stabilize the loop L2 and loop L3 conformations (A2).
H-bond between Thr-253 and Tyr-236 (A3). The two residues are highlighted in blue and their side chains are represented as sticks. The H-bond is
represented as a green cylinder connecting the Thr-253 Hγ2 and Tyr-236 Oμ atoms using the interaction_plotter PyMOL plugin provided within
PyInteraph. B) Conserved H-bond in the HPN motif of E2 enzymes. H-bonds of a 50 ns MD simulation of the E2 enzyme Ubc1 were calculated by
PyInteraph and plotted with its integrated PyMOL plugin, interaction_plotter (B1). Cylinder thickness is proportional to the persistence value of the
atoms involved in the H-bonds. A close view on the His and Asn residues in the HPN motif (B2) revealed a H-bond with high persistence (100%)
between the amide proton of the Asn and the imidazole ring of the His.
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different degree of compactness. A major role for salt bridges
organized in networks to stabilize the compact states of
AT-3182−291 was pointed out by both ESI-MS and simulations.
Thus, as an example of application of sb-IIN, we carried out
a similar analysis by PyInteraph on the MD ensemble of
AT-3182−291 (Figure 3-B). In particular, the salt bridges were
calculated for each of the two subpopulations of AT-3182−291. We
then estimated the threshold of persistence by the pcrit functionality

of f ilter_graph, which was 20% in both the cases to discard non-
significant and poorly populated interactions in the ensemble.
The sb-IIN was then analyzed by xPyder48 tools. In agreement
with the previously published data,51 the results show that
AT-3182−291 has large networks of salt-bridges, composed by a
high number of transient interactions. It turned out that the more
compact states (Figure 3-B1) have a higher number of salt-bridge
interactions and more interconnected networks compared to the
less compact states (Figure 3-B2). Moreover, the analyses
identified a higher number of hub residues (i.e., residues con-
nected to more than 3 nodes in the graph) in the more compact
states (Figure 3B) that can be related to the propensity for
tertiary structures.
As an example of analysis on H-bond networks by PyInteraph

we here show the case of study of the acylaminoacyl peptidase
from the thermophilic organism Aeropyrum pernix (ApAAP).
ApAAP is a homodimeric serine oligopeptidase composed by a
α/β hydrolase fold and a N-terminal β-propeller domain. Its
function and structure have been characterized in details by
biochemical and crystallographic studies.52,53 The catalytic triad
of ApAAP, composed by Ser445, Asp524, and His556, is struc-
turally stabilized in the closed conformation (Figure 4-B1) of the

enzyme by a network of H-bonds involving especially the loops
in which are located the catalytic Asp and His residues. In
the open conformation (Figure 4-A1), major conformational
changes occur in the whole protein. They include a rearrange-
ment of the His loop which becomes completely exposed to the
solvent and extremely flexible.53 To compare the open and
closed ApAAp states in a MD framework, we calculated the
H-bond network (with a threshold of persistence of H-bond
above 30%, as estimated by pcrit analysis) by PyInteraph. The
interaction network was then analyzed by the filtering option of
the xPyder48 plugin to map the local H-bonds around the His
loop. In particular, the loops harboring Asp524 and His556

Figure 3. Salt-bridge or H-bond IIN. A) Intermolecular salt bridges in
the dimeric cold-adapted Vibrio sp. alkaline phosphatase. The sb-IIN for
the MD ensemble of VAP was calculated with PyInteraph and
postprocessed with xPyder filtering interactions with persistence lower
than 20% and visualizing only the intermolecular salt bridges. The chains
A and B of VAP structure are shown in light gray and pink cartoons,
respectively. The salt bridges are shown as blue cylinder of thickness
proportional to the persistence value, and the residues involved in those
salt bridges are shown as spheres centered on the Cα atoms. B)
Networks of intramolecular salt-bridge interactions of AT3182−291. The
sb-IIN for the MD ensemble of AT3182−291 was calculated with
PyInteraph and then postprocessed with xPyder filtering out interactions
with persistence lower than 20%. The average structures of the two
conformational basins identified in the MD simulations are shown as
cartoon (1,2), and the Cα atoms of the residues involved in salt bridges
are shown as spheres, respectively. The salt bridges are represented as
sticks connecting the Cα atoms of residues, and their thickness is
proportional to the persistence of the interaction. The Cα of hub
residues are highlighted in yellow.

Figure 4.H-bond networks in ApAAP. H-bond networks of two 100 ns
MD trajectories of ApAAP starting from a closed (B1) or an open
conformer (A1) were calculated with PyInteraph and plotted with xPyder
PyMOL plugin (30% persistence threshold). The thickness of the
cylinder is proportional to the H-bond persistence. In the closed
conformation (B2) is evident a more persistent H-bond local network
between the residues in the loops of the catalytic His and Asp with
respect to the open conformation (A2).
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showed a clearly different pattern of interactions, with a larger
number of more persistent H-bonds connecting the two loops in
the closed state compared to the open state (Figure 4-A2, B2),
confirming what was observed by the X-ray structures. This dif-
ference could also account for the increased flexibility observed
for the His loop in the open conformation.
3.2.3. Application-3: Network of Hydrophobic Interactions.

Clusters of hydrophobic interactions are generally found in the
protein core, in a buried position, or at the center of interfaces
between subunits in a multimeric structure.69 An example of
PyInteraph application to decode information from a network of
hydrophobic interactions is here presented for the hyper-
thermophilic ApAAP protein.
The N-terminal α-helix 1 (α1) of ApAAP protrudes from the

N-terminal domain, and it connects the β-propeller to the
catalytic domain. α1 was demonstrated to play an important role
for protein stability since the deletion of the first 21 amino acids
of ApAAP affects the temperature-dependence of ApAAP
activity.52 It is also known that those effects are not ascribable
to its charged residues, whereas hydrophobic residues seem to
play an important role and have been shown to communicate
long-range to the catalytic site.40

Here, we assessed the capability of a network description of
hydrophobic interactions in detecting the paths of long-range
communication exerted by the hydrophobic residues in the
N-terminal α1 of ApAAP. In particular, we calculated the hydro-
phobic interaction network by PyInteraph and a persistence
threshold by f ilter_graph (i.e., 22%). The graph f ile was then
analyzed by graph_analysis to calculate the shortest paths of long-
range communication between each hydrophobic residue of the
helix and two hydrophobic residues just in the proximity of the
catalytic histidine (H556), i.e. I558 and A554 (Figure 5). In
agreement with the previous results, we here showed that the
native networks of hydrophobic interactions are compromised
and decreased in number uponV16Amutation (Figure 5-A) with
respect to the wild type (Figure 5-B). The paths of commu-
nication from α1 residues to the proximity of the catalytic

histidine (H556) are lost, in particular the paths directed
toward A554.

3.2.4. Application-4: To Build a Network of Interactions
Based Only on Side-Chain Contacts. PyInteraph can be also
used to build a general network of side-chain contacts, if the
default list of residues for hydrophobic interaction is replaced by
all the residues (except for glycines). In this case, the calculations
will be carried out for each pair of residues within the selected
distance cutoff, considering the distance between the center of
mass of the two residues on the base of the atomic mass file. An
example of this application is reported in Figure 6A for ApAAP,
and it will be compared to other networks in the following
sections. In particular, Figure 6A-1 illustrates the hubs of the
contact graph, as well as an example of paths of long-range com-
munication from each hydrophobic residue of the ApAAP α1
helix and the residues in the proximity of the catalytic histidine
(Figure 6-A2). The path search on the contact networks was
carried out by the xPyder48 module for Network Analysis upon
filtering the map with a persistence cutoff higher than 19%,
estimated by the f ilter_graph module.
We compared the results to the description of the paths of

communication from the N-terminal helix to the catalytic site of
ApAAP achieved by using only the hydrophobic interaction
network (Figure 5) or the PSN/DCCM approach.40 The three
approaches are all in overall agreement in identifying paths of
long-range communication from the hydrophobic residues in the
helix toward the catalytic site or its surroundings, whereas no
significant paths can be identified mediated from the charged
residues of the helix in the direction of the catalytic site.

3.2.5. Calculation of the Macro-IIN. PyInteraph has been also
designed to provide an unweighted macro-IIN that can be
achieved combining all the individual IIN networks of interest
upon filtering according to a preselected threshold of persistence.
Macro-IIN can be a suitable tool to have an overall view on all the
connections between the most persistent interactions in the
ensemble. Moreover, hub residues can be analyzed from the
macro-IIN graphs, and they can provide a complementary and

Figure 5. Paths of communication mediated by hydrophobic residues in the N-terminal helix of ApAAP as derived by a graph analysis of the
hydrophobic-interaction network in V16A (A) and wt (B) variants. Hubs are shown as spheres, the edges in the paths are indicated by cylinders of
thickness proportional to the persistence value of the interaction in the MD ensembles, H549 is shown as sticks and spheres, whereas I551 and A547 are
shown as sticks.
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additional source of information to identify crucial residues for
protein stability or related to structural communication.
The macro-IIN described in Section 2.3 is, by default, an

unweighted graph, it cannot thus be used for network analysis
itself. It should be used just to provide an overall view of the
location of all the interactions on the protein structure and the
reciprocal organization. Nevertheless, the user can supply a
weights matrix to the f ilter_graph script. In this case the weights
present in the matrix are assigned to the edges encoded in the
macro-IIN. Of course, any matrix of the correct shape can be
used, thus making the approach general and transferable. For
instance, the f ilter_graph tool can be used to combine the macro-
IIN with the energy map, so that the pseudoenergy values for
each pair of residues can be used as weights for the edges of the
macro-IIN and network analysis can be performed on the macro-
IIN.
3.2.6. Application-5: Insights on Structural Communication

from Interaction Energy Maps. Another functionality of
PyInteraph is the estimation of interaction energies using a
statistical potential based on four-atom distances, calledHunter46

applied to the structural ensemble. This information is likely to
complement the ones achieved by the IIN graphs that do not take
into account any energetic terms. For comparison we here
illustrate the same analyses applied to ApAAP α1 hydrophobic
residues using as input only the pseudoenergy map itself and

filtering the map for values higher than−0.1 according to the pcrit
analysis. The map was then postprocessed by xPyder48 to calcu-
late the paths of communication to the catalytic site (Figure 6-B).
Interestingly, all the approaches we tried are in agreement in
highlighting a long-range communication between the hydro-
phobic residues of the helix and the proximity of the histidine
of the catalytic site. Also most of the paths identified by the
pseudoenergy map (Figure 6-B) and the contact map analysis
(Figure 6-A) include the same nodes and have the same length,
andmost of them involved hydrophobic residues, which were the
major component of these paths. The same two (contact and
pseudoenergy maps) approaches applied to the identification of
communication paths from the positively charged residue R18 to
the catalytic site cannot identify valid paths in agreement with the
fact that this residue when mutated has no effect on the kinetic
parameters.40

3.2.7. Application-6: Monitoring Interactions Involving
Noncanonical Residues or a Nonprotein Ligand. As detailed
above, PyInteraph supports the introduction of uncommon
residue types or molecules through the modification of user-
friendly configuration files. For example, residues that have been
subject to post-translational modifications or nonprotein ligands
can be included. In the following, we show two examples, i.e. the
interactions exploited by a phosphoresidue in an E2 enzyme

Figure 6. Intramolecular networks as derived by the analysis of side-chain contact maps or energy graphs on ApAAP. A1) The whole network as derived
by the analysis of the side-chain contacts with PyInteraph and filtering of all the contacts with a persistence higher than with 18%. Contacts are shown as
cylinder of thickness proportional to the interaction persistence. The hub residues (i.e., nodes with more than 3 connections in the graph) are shown as
spheres centered on the Cα atoms. The catalytic histidine and the two residues in the surrounding I551 and A547 are shown as sticks and spheres. A2)
The paths of communication between each hydrophobic residue of ApAAP helix 1 and the I551, A547, and H549 are shown as cylinders as derived by
the network analysis performed on the contact map in panel A1. B1) The whole network described by the energy map of ApAAP using the four-distance
statistical potential is shown with the same scheme described in Part A. B2) The paths calculated for the same pairs of residues described in panel B1 are
shown as detected from the graph analysis of the energy map.
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(Figure 7-A) and the interaction between p53 DNA-binding
domain and the DNA molecule (Figure 7-B).
Post-translational modifications and phosphorylation in par-

ticular have a crucial regulatory and functional role in protein
biology. Phosphorylation is a ubiquitousmechanism and themodi-
fication of a polar residue, as Ser, Thr, or Tyr in a protein with the
addition of a negatively charged group as phosphate can cause large
electrostatic perturbations modulating the free energy landscape
of the protein and its conformational ensemble.70 Phosphorylation
often results not only in local but also complex and long-range
effects often related to switch change in protein function.

As an example of an interaction network involving non-
canonical residues, we here presented the long-range paths
mediated by a conserved phospho-site in the family 3 of E2 Ub-
conjugating enzymes. This phospho-site was demonstrated to be
important for the activation of the Ub-charging activity of
Cdc34,71 and it has been also suggested to mediate electrostatic
intramolecular interactions with the thiolester-bound Ub mole-
cule.58 We here analyzed the MD simulation of the phospho-
variant of Cdc34 in complex with Ub58 in terms of a network of
salt-bridge interactions with particular attention to the networks
that are mediated by the phospho-Ser at position 130. The
analysis was carried out modifying the .ini configuration file so
that the atoms of the phospho group were included as a new
“charged group”. The final salt-bridge network was analyzed by
f ilter_graph to identify the persistence threshold for the analysis
(i.e., 20% of persistence). The remaining interactions were
analyzed by graph_analysis calculating both hubs in the network
and the shortest paths of communication from the phospho-
S130 residue to other residues of the E2 or of Ub. It turned out
that pS130 is a crucial hub of the salt-bridge network, and it is
tightly connected not only within the E2 catalytic domain but
also mediates several electrostatic intermolecular interactions
with the Ub. Indeed, pS130 can reach by multiple paths D216
and K191 of Ub, which are also hub residues in the networks
(Figure 7A).
Another example for noncanonical molecules is the analysis

of an MD ensemble of p53 DBD in complex with the DNA
(Figure 7B). Hundreds of different p53-response elements
(p53-REs) have been identified in the human genome.72 They
are found in promoters and enhancers associated with the regu-
lation of genes involved in several cellular pathways such as
apoptosis and senescence, and they are selectively activated for
transcriptional repression or activation by binding to p53. It has
been suggested that subtle differences in p53-REs sequence can
trigger variances in the interaction patterns and induce allosteric
alterations on p53 DBD, which can, in turn, affect the recruit-
ment of coregulator and the organization of tetrameric p53 in
order to activate specific functions.73 In this context, we per-
formed and analyzed MD simulations of p53 DBD in complex
with a canonical p53-REs59 analyzing salt bridges and H-bonds
between the p53 DBD and the DNA by PyInteraph. The analysis
was performed using amodified version of charged_groups.ini and
hydrogen_bonds.ini configuration files to introduce all the DNA-
groups that can be involved in salt bridges or H-bonds with
proteins. The pcrit was calculated by f ilter_graph, and a cutoff of
20% was identified as a significant threshold of interaction
persistence. The interactions were analyzed both by xPyder48 and
the Interaction_Plotter plugin. Our analyses allow the description
of all the intermolecular relevant electrostatic interactions
between p53 DBD and DNA, in a MD framework, showing an
overall agreement with a previous study.73 In particular, we
identified highly persistent and sequence-specific contacts with
the DNA major groove by residues in H2 helix and loop L1 of
p53 DBD, as well as contacts with the DNA minor groove by
residues in loop L3 (Figure 7B). Moreover, salt bridges between
the DNA-backbone phosphate groups and the protein can be
identified (Figure 7B). In particular, residues relevant for the
interaction with the DNA major groove are K120, C277, and
R280. K120 also interacts with the phosphate groups of Gua7
and Gua8. R280 is involved in salt-bridges and H-bonds with
phosphates of Gua10’ and Thy11’. The interactions with the
DNA minor groove are mostly mediated by R248 in loop L3,
A276 backbone amide, R273, and S241.

Figure 7. Analysis of intra- and intermolecular interactions including
noncanonical residues or nonproteic ligand. A) The role of phospho-
S130 of Cdc34 in mediating intermolecular interactions with the Ub
molecule is shown. Cdc34 and Ub are shown in light gray and magenta,
respectively. The pS130 and the distal sites on Ub (D216 and K191) are
shown as sticks. The paths of communication from pS130 to those sites
are shown as violet sticks of thickness proportional to the persistence of
the interaction in the MD ensemble and residues belonging to the paths
that are hubs in the salt-bridge network of the Cdc34-Ub complex are
shown as spheres centered on the C-alpha atom. B) Interactions
stabilizing the binding between p53 DNA binding domain (p53-DBD)
and a p53 responsive element (p53-RE). The p53-DBD and the DNA
are shown in yellow and light blue and represented as cartoon and
surface. The salt bridges and H-bonds between the protein residues and
DNA are shown as red and green cylinders, respectively, with thickness
proportional to the persistence of the interaction in MD ensemble. The
residues involved in the interactions are highlighted with sticks.
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4. CONCLUSIONS
Here we present PyInteraph, a novel open-source software
designed to calculate intra- and intermolecular interactions in
protein structural ensembles, describe them in form of networks
of interactions, and perform network analysis on the interaction
graphs. It is a versatile tool, and it can accept the structural
ensemble in different format and from different sources, i.e.
either experimental or simulation-derived ensembles. The pro-
gram can calculate salt bridges, hydrogen bonds, and hydro-
phobic interactions, along with their persistence in the structural
ensemble. PyInteraph also estimates the interaction energy
between side chains employing a recently developed knowledge-
based potential.46,47 A graph per each interaction class (intra-
intermolecular interaction network, IIN), in which each residue
represents a node and the interactions between them the edges,
can be computed from the structural ensemble. A tool available in
the package, f ilter_graph, can then be used to estimate a sig-
nificance threshold of persistence for the IINs and to filter them
according to this criterion. The identified interaction graphs, one
per each type, can be also combined in a comprehensive macro-
graph (macro-IIN). The macro-IIN if weighted, for example on
the base of the interaction energy, can provide additional insight
on the interplay between the different interaction classes and
detect paths of structural communication. Plotting of the
interactions and of the IINs can be easily performed by plugins
for the popular molecular visualization software PyMOL. In fact,
the software package includes an especially designed PyMOL
plugin (interaction_plotter) to plot the interactions between the
individual chemical groups of the residue side chains. Moreover,
each IIN, the macro-IIN and the energy graph can be also
visualized with the PyMOL plugin xPyder.48 The use of straight-
forward and user-friendly configuration files and flags provides
then a great flexibility. Indeed, it permits to extend and enhance
the program by including in the analysis modified amino acids
and custom molecules to allow the user to deal with more com-
plex cases. The PyInteraph package is easy to install and manage
under the most common operating systems, as it is based upon
open source Python libraries.
The program is available free of charge as Open Source

software via the GPL v3 license at http://linux.btbs.unimib.it/
pyinteraph/.
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