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ABSTRACT The understanding, and even 
the description of protein folding is impeded by 
the complexity of the process. Much of this com- 
plexity can be described and understood by tak- 
ing a statistical approach to the energetics of 
protein conformation, that is, to the energy land- 
scape. The statistical energy landscape ap- 
proach explains when and why unique behav- 
iors, such as specific folding pathways, occur in 
some proteins and more generally explains the 
distinction between folding processes common 
to all sequences and those peculiar to individual 
sequences. This approach also gives new, quan- 
titative insights into the interpretation of ex- 
periments and simulations of protein folding 
thermodynamics and kinetics. Specifically, the 
picture provides simple explanations for folding 
as a two-state first-order phase transition, for 
the origin of metastable collapsed unfolded 
states and for the curved Arrhenius plots ob- 
served in both laboratory experiments and dis- 
crete lattice simulations. The relation of these 
quantitative ideas to folding pathways, to uniex- 
ponential vs. multiexponential behavior in pro- 
tein folding experiments and to the effect of mu- 
tations on folding is also discussed. The success 
of energy landscape ideas in protein structure 
prediction is also described. The use of the en- 
ergy landscape approach for analyzing data is 
illustrated with a quantitative analysis of some 
recent simulations, and a qualitative analysis of 
experiments on the folding of three proteins. 
The work unifies several previously proposed 
ideas concerning the mechanism protein folding 
and delimits the regions of validity of these ideas 
under different thermodynamic conditions 
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INTRODUCTION 
The apparent complexity of folded protein struc- 

tures and the extraordinary diversity of conforma- 
tional states of unfolded proteins make challenging 
even the description of protein folding in atomistic 
terms. Soon after Anfinsen’s classic experiments on 
renaturation of unfolded proteins,’ Levinthal recog- 
nized the conceptual difficulty of a molecule search- 
ing at  random through the cosmologically large 
number of unfolded configurations to  find the folded 
structure in a biologically relevant time.2 To resolve 
this “paradox,” he postulated the notion of a protein 
folding pathway. The search for such a pathway is 
often stated as the motive for experimental protein 
folding studies. On the other hand, the existence of 
multiple parallel paths to the folded state has been 
occasionally i n ~ o k e d . ~  Recently, a new approach to 
thinking about protein folding and about these is- 
sues specifically has emerged based on the statisti- 
cal characterization of the energy landscape of fold- 
ing  protein^.^-^ 

This paper presents the basic ideas of the statis- 
tical energy landscape view of protein folding and 
relates them to the older languages of protein fold- 
ing pathways. The use of statistics to describe pro- 
tein physical chemistry is quite natural, even 
though each protein has a specific sequence, struc- 
ture, and function essential to its biological activity. 
The huge number of conformational states immedi- 
ately both allows and requires a statistical charac- 
terization. In addition folding is a general behavior 
common to  a large ensemble of biological molecules. 
Many different sequences fold to  essentially the 
same structure as witnessed by the extreme dissim- 
ilarities in sequence which may be found in families 
of proteins such as ly~ozyme.~ Thus for any given 
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observed protein tertiary structure, there is a statis- 
tical ensemble of biological molecules which fold to  
it, Many studies suggest that the dynamics of many 
parts of the folding process are common to all of the 
sequences of a given overall structure, while others 
are peculiar to  individual sequences. Distinguishing 
folding processes common to all sequences from those 
peculiar to individual sequences is a major goal of 
physical theories of protein folding. The statistical 
energy landscape analysis will show which features 
are common and which are specific taxonomic as- 
pects of protein folding. 

Depending on the statistical characteristics of the 
energy landscape, either a unique folding pathway 
or multiple pathways may emerge. A biological rel- 
evance of the distinction between the two pictures is 
that mutations can more dramatically affect the dy- 
namics through unique pathways than through 
multiple pathways. 

The organization of this paper is as follows: in the 
next section we describe the energy landscape of pro- 
tein folding, discuss the properties of smooth and 
rough energy landscapes, and indicate that it ap- 
pears that protein folding occurs on an energy land- 
scape that is intermediate between most smooth and 
most rough. In the third section we describe a simple 
protein folding model that interpolates between 
these two limits and exhibits both the smooth and 
the rough energy landscape properties that are 
present in folding proteins. The equilibrium thermo- 
dynamic properties of this model are also discussed 
in this section. The fourth section starts with a short 
survey of the differences between the kinetics of 
complex chemical processes, such as protein folding, 
and the kinetics of the simple chemical processes 
whose understanding forms the basis of the most 
commonly used reaction rate theories. We review 
how these common theories should be modified to 
cope with the complexity of a process like protein 
folding. Then we present the necessary modifica- 
tions of kinetics and apply them to the simple pro- 
tein folding model of the third section. Each scenario 
has its own characteristic behavior. The folding sce- 
nario observed in any given experiment depends on 
the specific sequence and the refolding conditions. 
The fifth section shows how the scenarios presented 
in the fourth section can be understood in terms of 
the phase diagram for protein folding. This phase 
diagram is also discussed in detail. In the next sec- 
tion we show how the energy landscape ideas can be 
used to analyze data by presenting a rough but 
quantitative analysis of some computer simulation 
data. In the seventh section, we give a flavor of the 
issues in energy landscape analysis of experimental 
data through an examination of some previously 
published experimental results. We also present a 
tentative assignment of the folding scenarios ob- 
served in these experiments. The concluding section 
then summarizes the results, and discusses the sig- 

nificance of the energy landscape for understanding 
protein folding, for protein structure prediction, and 
for protein engineering. 

SMOOTHNESS, ROUGHNESS, AND THE 
TOPOGRAPHY OF ENERGY LANDSCAPES 

Protein folding is a complex process, typically oc- 
curring a t  a constant pressure and temperature, in- 
volving important changes in the structure of both 
the chain and the s o l ~ e n t . ~ , ~  The natural thermo- 
dynamic potential for describing processes at  con- 
stant pressure and temperature is the Gibbs free 
energy,lO~ll so we will use an effective free energy 
that is a function of the configuration of the protein 
to describe the protein-solvent system. Notice that 
this description implicitly averages over the solvent 
coordinates. This averaging means that the forces 
that arise from this potential function are tempera- 
ture dependent. To make these considerations more 
concrete, consider the forces on two apolar groups 
immersed in water. The apolar groupsolvent sys- 
tem has a lower free energy if the two apolar groups 
are close to  one another, so the solvent-averaged free 
energy, mentioned above, has a minimum when the 
two groups are close and becomes larger when the 
groups are further apart." The change in the sol- 
vent-averaged free energy as a function of distance 
between the groups causes the groups to  attract one 
another. This attraction is the hydrophobic force. 
Since the free energy of the apolar groupsolvent 
system changes as the temperature changes, like- 
wise the solvent-averaged free energy and the hy- 
drophobic force also 

The need to consider the form of the free energy as 
a function of protein conformation, which we call the 
energy landscape, stems, in part, from a well-known 
argument of Cyrus LevinthaL2 The argument starts 
by noticing that the number of possible conforma- 
tions in a protein scales exponentially with the num- 
ber of amino acid residues. Thus, if each amino acid 
has only two possible conformations, then the num- 
ber of possible conformations for a protein with 100 
amino acids is 2"' = lo3'. If, as a conservative es- 
timate, at  least 1 ps is required to  explore each con- 
formation, then the time required to  explore all con- 
formations of the 100 amino acid protein is 
approximately 10" s, or more than lolo years. From 
this estimate Levinthal argued that the protein did 
not have enough time to find its global free energy 
minimum, so the final, folded conformation of a pro- 
tein must be determined by kinetic pathways. This 
argument is easily criticized. For example, one could 
equally well apply it to the formation of crystals, 
and conclude that crystallization can never occur! 
More seriously, the argument can be used to ques- 
tion how the protein could reliably find any partic- 
ular conformation. In this form the argument is of- 
ten called Levinthal's paradox. The weak point in 
Levinthal's argument is the assumption that all con- 
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formations are equally likely in the path from the 
unfolded to the folded states. In fact, conformations 
with lower free energy are more likely than those 
with higher free energy. Levinthal’s argument as- 
sumes a free energy landscape that looks like a flat 
golf course with a single hole a t  the free energy min- 
imum. The argument breaks down completely for a 
free energy landscape that looks like a f ~ n n e l . ~ , ~ ~ - ’ ~  
A central purpose of this paper is to  further develop 
this intuitive notion of energy landscape and to de- 
scribe quantitatively kinetic behavior on the kinds 
of energy landscapes that are encountered in protein 
folding. Interestingly, Levinthal’s paradox will reoc- 
cur, albeit in a completely different form. 

The most detailed description of the energy land- 
scape of a folding protein molecule would be ob- 
tained by specifying the free energy averaged over 
the solvent coordinates as a function of the coordi- 
nates of every atom in the protein. At this fine level 
of description, the free energy surface of a protein is 
riddled with many local minima.17218 Most of these 
minima correspond to small excitation energies con- 
nected with individual local conformational changes 
such as rotations of individual side chains. The en- 
ergies involved in these small conformational 
changes are typically on the order of k,T, that is, the 
size of the thermal energies of the atoms in the pro- 
tein. Interconversion between these shallow local 
minima will be rapid on the time scale of protein 
motions. Sometimes many side chains can shift, giv- 
ing quite different minima with a large energy bar- 
rier between them. Changes of backbone conforma- 
tion can lead to globally different protein folds 
involving many different interresidue contacts. The 
energies involved in these larger conformational dif- 
ferences can easily become many times k,T, and in- 
terconversion between these deeper, globally differ- 
ent local minima can be quite s ~ o w . ~ ~ , ~ ~  

The interesting features of protein folding dynam- 
ics concern the free energy surface viewed on this 
more coarse-grained structural scale. Very different 
behavior occurs, depending on whether this coarse- 
grained energy landscape is “smooth” or “rough.” In 
Figure 1 we show representative smooth and rough 
energy landscapes. A smooth energy landscape has 
only a small number of deep valleys and/or high 
hills. For smoother energy landscapes there are typ- 
ically many high energy structures and only a few 
low energy structures. The more closely the system 
resembles a few low energy structures, the lower the 
energy. Thus, each of the low energy structures is a t  
the bottom of a broad energy valley. A protein mol- 
ecule that was in one of the valleys would find itself 
dynamically funneled to the lowest energy state. 
Therefore, we will refer to  the valley associated with 
a low energy structure as a “funnel.” In this lan- 
guage, a system with a smooth energy landscape has 
a few deep minima, each having a large, broad fun- 
nel. Systems with smooth landscapes exhibit coop- 
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Fig. 1. The energy of a system (vertical axis) is sketched 
against a single coordinate (horizontal axis) for representative 
smooth and rough energy landscapes. The top sketch shows a 
smooth landscape with only a few energy minima each having a 
broad funnel leading to it. The bottom sketch shows a rough en- 
ergy landscape with many energy minima each with a narrow 
funnel leading to it. 

erative phase transitions, illustrated by such phe- 
nomena as crystallization of simple materials and in 
biological macromolecules by phenomena such as 
the helix-coil transition.” The thermodynamic 
phases of systems with smooth energy landscapes 
are determined by the temperature. At high temper- 
atures, the large number of high energy structures 
predominate, but as the temperature of the system 
is lowered, the system will occupy the lower energy 
states. Dynamically, below a transition tempera- 
ture, such systems will fall into a funnel of low en- 
ergy states and may remain trapped there. In typi- 
cal cooperative transitions such as crystallization, 
once a large enough nucleus of low energy structure 
is formed, the rest of the low energy structure forms 
rapidly.20-22 

Thermodynamically, protein tertiary structure 
formation for smaller proteins has been shown to 
exhibit this type of cooperative behavior. For small, 
single domain proteins, at most two states are ob- 
served on the longest time scales under physiologi- 
cal solvent conditions: One a high entropy high en- 
ergy disordered phase corresponding to the unfolded 
protein, and a lower entropy low energy phase de- 
scribing the folded protein.23 The fact that the phase 
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space is divided into two main parts is confirmed by 
the coincidence of transitions measured by different 
probes such as optical rotation or f l u o r e ~ c e n c e . ~ ~ - ~ ~  
In addition on the longest time scales, one sees only 
a single exponential in the kinetics of folding. Sim- 
ulations of protein folding have shown evidence of 
nucleation-like beha~ior . ’~ Thus these aspects of 
tertiary structure formation are characteristic of a 
system with a smooth energy landscape. 

Smooth energy landscapes are so commonly used 
in the description of problems that systems with 
rough energy landscapes are considered exotic and 
have only recently been studied by chemists and 
physicists. A rough energy landscape would be one 
that, when coarse grained, has many deep valleys 
and very high barriers between them. In such a 
rough energy landscape there are a very large num- 
ber of low energy structures that are entirely differ- 
ent globally. Each of these diverse low energy struc- 
tures has a small funnel leading to  it. 

The thermodynamic and kinetic behavior of sys- 
tems having rough energy landscapes is quite dis- 
tinct from those with smooth landscapes. Rough en- 
ergy landscapes occur in problems in which there 
are many competing interactions in the energy func- 
tion. This competition is called “frustration.” The 
paradigm for a frustrated system is the spin glass, a 
magnetic system in which spins are randomly ar- 
rayed in a dilute all~y.’~-~’ The interactions be- 
tween spins are equally often, and a t  random, ferro- 
magnetic (the spins want to  point in the same 
direction) and antiferromagnetic (the spins want to 
point in opposite directions). These two conflicting 
local tendencies (one to parallel spins, the other to  
alternating spins) cannot be satisfied completely in 
any arrangement of spin orientations. Thus, the sys- 
tem is said to  be “ f r ~ s t r a t e d . ” ~ ~  Many optimization 
problems that arise in economic contexts have rough 
energy landscapes because of frustrated interac- 
tions. An economic example of a rough landscape is 
provided by the traveling salesman problem. In this 
problem one attempts to minimize the total length of 
a journey which visits each of a set of randomly ar- 
rayed cities precisely once during the trip. Here 
searching for the minimum length trip leads to  an 
optimization problem in which there are many al- 
ternate routes that have very nearly the same value 
of the required length (equivalent to  multiple min- 
ima). The frustration here arises from the constraint 
of a single visit to a city because of an occupancy tax; 
no central location can be used as a base. Finding 
the optimal solution to  this problem is a difficult 
task. Computer scientists have developed a set of 
ideas that describes many problems that are hard to 
solve.32 Although the precise technical framework 
of these ideas is elaborate, the basic idea is simple; 
there exists a set of difficult problems that cannot be 
solved by any known polynomial time algorithm, 
and it is generally believed that no such algorithm 

exists. These problems are called NP-complete. Here 
by polynomial time algorithm we mean that the 
amount of computation time required to solve the 
problem grows no faster than some fixed power of 
the problem size, e.g., the number of cities in the 
traveling salesman problem. Furthermore, the gen- 
eral model of computation used in NP-completeness 
proofs is thought to be able to simulate any natural 
system, so the limitations that NP-completeness im- 
pose on computation probably hold for all natural 
systems, e.g., folding proteins, the human brain etc.. 
Thus, solutions to  NP-complete problems require an 
exponential, rather than polynomial, amount of 
time. In practical terms, NP-completeness means 
that the amount of time required to solve even mod- 
est size problems can become astronomically large. 
The traveling salesman problem is an example of an 
NP-complete problem; that is, its solution for the 
general case requires exponentially more computa- 
tional time as the size of the problem grows. Finding 
the lowest free energy state of a macromolecule with 
a general sequence also has been shown to be NP- 
complete.33 NP-completeness is a worst case analy- 
sis; if a problem is proven to  be NP-complete then 
finding the solution to at  least one case requires an 
exponential computation time. In economic situa- 
tions these computational difficulties are avoided by 
choosing to be satisfied with an acceptable solution 
or by selecting the conditions of the problem so that 
easy answers can be found. An example of the latter 
is the introduction of the “hub” system to airline 
traffic. A central city, perhaps not usually visited, is 
introduced as a place that can be multiply visited at  
little cost. Similarly for the physicist’s spin glass, 
there are some specifically chosen arrangements of 
ferromagnetic and antiferromagnetic interactions so 
that each interaction can be satisfied in a single con- 
figuration. The arrangements of interactions which 
do this are relatively improbable. Therefore, in the 
context of proteins, NP-completeness means that 
there are amino acid sequences that cannot be folded 
to their global free energy minimum in a reasonable 
time either by computer or by the special algorithm 
used by nature. Thus, in analogy with the economic 
situation, either naturally occurring proteins fold to 
a structure that is not a global minimum or they 
have been selected to be members of the subset of 
amino acid sequences that can fold to their global 
free energy minimum in a reasonable time. The NP- 
completeness proof alone does not distinguish be- 
tween these two possibilities. If the latter possibility 
is correct then one approach to predicting structure 
is simulated annealing.34 Starting a t  high temper- 
ature, the system is slowly brought to  low tempera- 
ture while following its dynamics. These stochastic 
search algorithms parallel the Levinthal paradox 
for protein folding kinetics. Such an approach can 
work only if the computer’s energy landscape is suf- 
ficiently close to the one that nature used. 
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In any case, even if proteins fold to a structure 
that is not a global minimum, i.e., folding is kinet- 
ically controlled, they must reliably fold to a single 
structure. Recent experiments on random and de- 
signed amino acid sequences have shown that reli- 
able folding is not a universal property of polypep- 
tide chains, and that multiple folded structures are 
the rule rather than the e x c e p t i ~ n . ~ ~ , ~ ~  Thus both 
theory and experimental evidence indicate that such 
reliable folding characterizes only a small fraction of 
amino acid sequences. Proteins are a subset of this 
fraction of reliable folders. Later in this paper we 
discuss a property we call minimal frustration. Ev- 
idence from theory and from simulation indicates 
that amino acid sequences with minimal frustration 
are likely to  fold reliably. 

What are the possible sources of frustration in the 
general case of a heteropolymer? Consider the hy- 
drophobic effect, which for illustration we think of 
as a contact interaction favoring hydrophobic pairs 
or hydrophilic pairs. Because of the constraint of 
chain connectivity for most random sequences 
bringing together a hydrophobic pair distant in se- 
quence will require bringing together other pairs in 
the sequence which will often be dissimilar and 
therefore unfavorable.* This situation could be 
avoided in natural proteins by choosing simple pat- 
terns of hydrophobic-hydrophilic alternation like 
those seen in p-barrel proteins.37 Similarly, for most 
sequences the hydrophobicity pattern favoring a 
particular secondary structure (a-helix or p-sheet) 
might or might not be consistent with the tendency 
of each amino acid to be in that secondary structure. 
Indeed, in general there is usually some conflict of 
this sort, since the ends of a-helices have unsatisfied 
hydrogen bonds, but the helices must be broken so 
that a compact structure can form, satisfying the 
hydrophobic forces. Sequences may need special 
start or stop residues to  form terminal hydrogen 
bonds gracefully, using side  chain^.^',^^ 

Polymers can also exhibit another kind of frustra- 
tion. A molecule often needs to overcome an energy 
barrier to change from one structure to another. 
This notion has been used explicitly in the simula- 
tion studies of Camacho and Thirumalai and of 
Chan and Dill where they constructed paths with 
minimal energy barriers between similar configura- 
tions in their protein folding models and used this 
network of pathways to map out several features of 
the energy l a n d ~ c a p e . ~ ~ - ~ ’  If this energy is too high 
to  overcome in a reasonable time, for example, some 
fraction of the folding time for a protein, then we 
may say that the two structures are not “dynami- 
cally connected.” Two different structures may re- 
semble each other, and even have similar free ener- 

*It is useful for the reader to study Figure 2, in which we 
illustrate the varying degrees of frustration for two sequences 
of a lattice model of a heteropolymer. 

gies, but they may be unable to reconfigure from one 
to the other one in any reasonable time scale. Such 
structures would not be dynamically connected. In 
particular, for polymers, geometric constraints arise 
because the polymer chain cannot pass through it- 
self. This effect is called excluded volume, and may 
give rise to an enormous energy barrier. In this case 
one can easily have two structures that resemble 
each other but are not dynamically connected. 
Leopold et al. have explicitly shown that this situa- 
tion occurs in some simple models of protein fold- 
ing.15 We will refer to this kinetic phenomenon as 
geometric frustration. 

Systems with rough energy landscapes also ex- 
hibit effective phase  transition^.^^-^' When the 
temperature of such a system is lowered, it tends to  
occupy the lower energy states and a t  a transition 
temperature will become trapped in one of them. 
Generally, these transitions are accompanied by a 
considerable slowing of the motion as the system 
tries to exit over the high energy barriers. In the 
case of liquids being supercooled below their freez- 
ing point, this phenomenon is known as the glass 
t r a n ~ i t i o n . ~ ~ , ~ ~  Below the glass transition tempera- 
ture, the liquid is trapped in a single deep minimum 
and thus it looks like a solid. The thermodynamics of 
this solid depends on its detailed thermal history. 
Typically, systems with rough energy landscapes ex- 
hibit glass transitions analogous to those that occur 
when liquids are supercooled below their freezing 
point. As the system approaches the glass transi- 
tion, the slow transitions between minima leads to  
strongly nonexponential time dependences for many 
properties. 

Typically a heteropolymer with a random se- 
quence interacting with itself has a rough energy 
landscape. One source of the roughness is the frus- 
tration arising from conflicting interactions but geo- 
metric constraints may be important too. In either 
case, energetic or geometric frustration, there will 
be a large barrier to  reconfigure between these con- 
figurations. This is a natural starting assumption 
for thinking about heteropolymer dynamics since 
one expects this behavior generically for heteroge- 
neous systems. The implications of the roughness of 
heteropolymer energy landscapes for protein folding 
were first discussed by Bryngelson and Wolynes who 
postulated that the energies of the states of a ran- 
dom heteropolymer could be approximately modeled 
by a set of random, independent ene rg ie~ .~  This 
model is known as the random energy model in the 
theory of spin g l a ~ s e s . ~ ~ - ~ ~  The random energy 
model approximation used by Bryngelson and 
Wolynes was later shown to be equivalent to a more 
conventional replica mean field approximation by 
Garel and Orland48 and by Shakhnovich and Gu- 
tin.49 A direct demonstration of the roughness of the 
energy landscape for heteropolymers has been car- 
ried out for small lattice model proteins with simple 
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Fig. 2. The ground state of two different sequences for a 27- 
mer, with two different types of monomers (two letter code) on a 
cubic lattice. If two monomers are adjacent in space, but not along 
the chain, then there is an attractive interaction between them. 
This interaction is strong if the monomers are of the same type 
and weak if they are of different types. For all figures we use the 
following notation: solid lines represent covalent bonds, dashed 
lines represent spatial contacts with weak interactions, and no 
lines are drawn for spatial contacts with strong interactions. The 
model for this 27-mer is presented fully in the section on Energy 
Landscape Analysis of Folding Simulations. The strong interac- 
tions are equal to -3 and the weak ones to -1 in arbitrary energy 
units. The most compact configurations will be cube-like and they 
have 28 spatial (nonbonded) contacts. Sequence (A) has only 
strong contacts in its ground state. For this reason we call it a 
nonfrustrated ground state. (Al)  The ground state structure for 
this sequence. We call it nonfrustrated because all contacts are 
optimal. We show in the section on Folding Simulations that this 
sequence is a good folding sequence. This is not the case for 
sequence (B). Its ground state configuration has 4 weak interac- 
tions, as shown in B1. For this reason we say that this sequence 
is frustrated, i.e., it is unable to optimize all the interactions 

and it has to compromise with some weak ones. We show in the 
section on Folding Simulations that sequence (B) is not a good 
folder. However, there is a more interesting way of observing 
frustration. Let us call Q a measure of similarity between the 
ground state configuration and any other configuration (compact 
or noncompact) for a given sequence. The quantity Q measures 
the number of contacts between pairs of residues that are the 
same for a given configuration and its ground state one. There- 
fore, Q is a number between 0 and 28. Most of the configurations 
with energy just above the ground state in sequence (A) have Q 
between 18 and 26, i.e., very similar to the ground state configu- 
ration. An example of such a configuration is shown in A2 where 
the energy is -78 and Q is 26. The situation is completely differ- 
ent for sequence (B). There are configurations with energy just 
above the ground state configuration that have a Q between 4 and 
12, i.e., they are very different from the ground state. An example 
of one of these configurations is shown in 8 2  where the energy is 
-72 and Q is 9. In this case, there are lots of low energy states 
that are completely different but energetically very similar. When 
the system gets trapped in one of these low energy states, it takes 
a long time to completely reconfigure before it can try to fold again. 
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interactions. Here the exact enumeration of config- 
urations can be carried out and it can be directly 
established that there are configurations very close 
in energy to the ground state that have topologically 
distinct folds for most random  sequence^.^'-^^ Work 
on realistic lattice models for small proteins con- 
fined to their proper shape (where complete enumer- 
ation can be carried out) suggests the possibility of 
deep low energy structures that are globally differ- 
ent in Even for a well designed sequence 
(i.e., one designed to have a smooth energy land- 
scape) some roughness may remain. Early direct ev- 
idence for roughness in the energy landscape of pro- 
tein folding simulations of designed sequences is 
provided by the work of Honeycutt and Thirumalai, 
who looked for and found deep multiple energy min- 
ima in their simulations of P-barrel f~lding.~’,~’ Fi- 
nally, the historical difficulty of predicting protein 
structure from sequence arises from the “multiple 
minimum problem,” that is, the existence of many 
minima in the empirical potential energy functions 
used to predict these structures. The large number 
of minima indicates that the energy landscape of 
these potential functions is rough. The importance 
of the multiple minimum problem, and therefore the 
roughness of the energy landscape, as an impedi- 
ment to structure prediction has been emphasized 
by Scheraga and collaborators.60 

Some experimental features of protein folding 
suggest a considerable roughness to  the energy 
landscape. Although protein folding appears to  be 
exponential in time, short time scale measurements 
show the existence of intermediates. Also, multiex- 
ponential decay of relaxation properties is seen in 
these early events.61 Many of the time scales in- 
volved in protein unfolding have very large appar- 
ent activation energies, suggesting high energy bar- 
riers. There is the occasional report of history 
dependence to protein folding, although, this is ab- 
sent from studies on smaller proteins in ~ i t r o . ~ ~  

QUANTITATIVE ASPECTS OF THE 
STATISTICS AND THERMODYNAMICS OF 

A FOLDING PROTEIN 
In the previous section we found that a folding 

protein exhibits behaviors that are characteristic of 
both smooth and rough energy landscapes. Thus, 
from the phenomenological viewpoint it is evident 
that protein folding occurs on an energy landscape 
that is intermediate between the most smooth and 
the most rough. A simple model proposed by Bryn- 
gelson and Wolynes interpolates between the two 
limits and illustrates the basic ideas of the energy 
landscape analysis of protein folding.t4 When 

‘In this section we use the word “energy” to describe the free 
energy of a given complete configuration of the protein. Such a 
configuration has many solvent configurations consistent with 
it. Thus our energy landscape has a temperature dependence 

stripped down to its bare essentials, this picture of 
the folding landscape is based on two postulates: The 
first captures the rough aspects of the energy land- 
scape. It is postulated that (for natural proteins) the 
energy of a contact between two residues which does 
not occur in the final native structure of a protein or 
the energy of a residue in a secondary structure 
which does not turn out to  be ultimately correct can 
be taken as random variables; that is, in its non- 
native interactions, a protein resembles a random 
heteropolymer. In its extreme form this suggests 
that we can take the energies of globally distinct 
states to be random variables which are uncorre- 
lated, provided no native contacts are made and no 
native secondary structure is formed. A second pos- 
tulate captures the smooth aspects of the folding 
landscape. When a part of the protein molecule is in 
its correct secondary structure, the energy contribu- 
tions are expected to be stabilizing. In addition, 
when a correct contact is made, although occasion- 
ally the energy may go up, on the average over all 
possible contacts, the energy will go down. Thus if 
the similarity to the native structure is used as a 
distance measure, the surface may have bumps and 
wiggles but the energy generally rises as we move 
away from the native structure. Thus there is an 
overall energetic funnel (of the sort discussed in the 
previous section) to  the native structure. 

Bryngelson and Wolynes used the term “the prin- 
ciple of minimal frustration” in describing the 
smoothness postulate, insofar as it is what distin- 
guished natural proteins from random heteropoly- 
mers. The smoothness of folding landscapes arises 
from the selection of protein sequences by evolution. 
If the necessity to maximize the ability of folding 
quickly is the dominant selection pressure, the 
smooth part of the energy landscape will be para- 
mount. On the other hand, there are other selection 
pressures as well. Thus evolution may not be able to 
remove some frustrated interaction from natural 
proteins. Indeed, neutral evolution would suggest 
that randomness and frustration would continue to 
exist to  an extent that allows only adequate stability 
and kinetic foldability. The minimal frustration of 
natural proteins is evident in several ways. Exami- 
nation of X-ray structures shows that side chains 
are in fact chosen by evolution to make coherent 
contributions to  supersecondary structures. Clear 
examples are leucine zippers62 and the P-barrel am- 
phiphilicity mentioned earlier. Symmetric se- 
quences like these often lead to low frustration in 
symmetric structures. Consistency between second- 
ary structures and global tertiary structures is also 
important. This is the “principle of structural con- 
sistency” enunciated by 

Purely kinetic effects also limit the folding of pro- 

due to hydrophobic forces. We do not consider this effect when 
we discuss the pure effects of temperature in this section. 
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teins. For example, if the minimum energy struc- 
ture is not dynamically connected (in the sense de- 
scribed in the previous section) to any other low 
energy structures, then it would be kinetically inac- 
cessible in spite of its low energy. The importance of 
kinetic effects for protein folding was investigated in 
the previously mentioned study of Leopold et al.15 
They simulated the folding of two “sequences” with 
their simple model, one of which folded rapidly to its 
global energy minimum, the other of which failed 
to find its global energy minimum in several long 
runs. Analysis of the dynamic connectivities pro- 
duced by the two “sequences” showed that the min- 
imum energy structure of the rapidly folding se- 
quence had a rich network of dynamic connections to 
most of the other low energy structures. In contrast, 
the minimum energy structure of the other sequence 
was sparsely connected to other low energy struc- 
tures. 

A figure encompassing the qualitative consider- 
ations about the folding landscape is pictured in Fig- 
ure 3A. Of course, no low dimensional figure can do 
justice to the high dimensionality of the configura- 
tion space of a protein, but one sees that the domi- 
nant smooth features of the landscape depend on 
how close a protein configuration is to the native one 
and this coordinate is specifically shown as the ra- 
dial coordinate in the figure. There are a variety of 
ways of measuring the similarity of a protein struc- 
ture to the native structure. One can take the frac- 
tion of the amino acids residues which are in the 
correct local configuration. This is a choice used in 
the original papers of Bryngelson and W ~ l y n e s . ~ - ~  
Another possibility for measuring tertiary structure 
is the fraction of pairs of amino acids which are cor- 
rectly situated to some accuracy. This measure is 
related to the distance plots used by crystallogra- 
p h e r ~ . ~ ~ , ~ ~  The similarity measure may also be 
thought of as a measure of the distance between the 
two structures, so that similar structures are con- 
sidered to be close to one another. We denote the 
similarity of a protein structure to the native struc- 
ture by n. We will take n = 1 to denote complete 
similarity to the native state and n = 0 to denote no 
similarity to the native state. The radial coordinate 
in Figure 3A should be thought of as this similarity 
measure n. The average energy of a state with a 
certain similarity to the native structure has a value 
that gets lower as the native structure is ap- 
proached-thus the overall slope of the energetic 
funnel. On the other hand the rugged part of the 
energy landscape means that no individual state has 
precisely this energy and we can characterize the 
fluctuations in energy with a given similarity to the 
native structure by the variance, M2(n) .  The rug- 
gedness of the energy landscape as measured by this 
variance clearly depends on the compactness of the 
protein molecule since it arises from improper three- 
dimensional contacts. In general, the variance may 

also conceivably decrease as the native structure is 
approached, but this is not essential for our picture. 

The energy of a given state arises from the con- 
tributions of many terms, so it is natural to assume 
that the probability distribution of energies for any 
similarity to the native structure is given by a Gaus- 
sian distribution, 

The other important feature of the statistical 
landscape description is the number of conforma- 
tional states of a protein as we move away from the 
native structure. The total number of conforma- 
tional states grows exponentially with the length of 
the protein. If there are y configurations per residue, 
this total number of configurations is R = p. y 
depends on the level of description of the model. It is 
of order 3, 4, or 5 for the backbone coordinates, but 
might rise to roughly 10 if the side chain configura- 
tions are also included in the analysis. As noted 
above, the ruggedness of the energy landscape is 
most important when the protein is compact. The 
number of compact configurations is considerably 
smaller than the total number and can be estimated 
from Flory’s theory of excluded volume in poly- 
m e r ~ . ~ ~ , ~ ~  R(R) decreases quite considerably as the 
radius of gyration of the protein falls. For maxi- 
mally compact configurations of the backbone, a(R) 
= yW where y* is of the order 1.5. 

The completely folded protein has a much smaller 
degree of conformational freedom. Essentially a sin- 
gle backbone structure exists. Thus the number of 
configurations of the protein decreases as we move 
toward the native structure. Therefore, if R(n) de- 
notes the number of structures with a similarity 
measure with the native structure of n, then R(n) 
and 

decreases as n gets larger. The exact similarity mea- 
sure determines the behavior of S,(n). For our pur- 
poses here we need only take a simple form of S&) 
that decreases as the native state is approached. 
Roughly speaking, we can approximate R as a func- 
tion of n by R = yoN(l-n). 

As one moves away from the native structure 
there is a huge increase in the number of accessible 
states, which we can think of as living on the 
branches of a highly arborized tree as is shown sche- 
matically in Figure 3B. Not all of the states on a 
statistical landscape are thermodynamically or ki- 
netically important, since the high energy states 
cannot be thermally occupied. The number of states 
with a specified energy E ,  which have a specified 
similarity, n, to the native structure, is given by 

R(E,n) = y*N“pn)P(E). (3) 



Fig. 3. (A) Sketch of an energy landscape encompassing the 
qualitative considerations about the folding. The energy is on the 
vertical axis and the other axes represent conformation. This land- 
scape has both smooth and rough aspects. Overall, there is a 
broad, smooth funnel leading to the native state, but there is also 
some roughness superimposed on this funnel. Of course, no low 
dimensional figure can do justice to the high dimensionality of the 

configuration space of a protein. (6) A schematic drawing of pro- 
tein conformations in relation to their similarity to the native state. 
The vertical direction is a folding reaction coordinate. The confor- 
mations that are higher in the figure are more similar to the native 
state. As one moves away from the native structure there is a 
huge increase in the number of possible conformations. 
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At thermal equilibrium, only a small band of en- 
ergy is occupied with a certain similarity to the na- 
tive structure. For a large protein, this band will be 
relatively well defined in energy. The most probable 
value of the energy in this band can be obtained by 
maximizing the thermodynamic weight of states of a 
given energy. This is a product of the Boltzmann 
factor and the number of states of that energy 

(4) 

[Note: Do not confuse p(E)  above with the P(E) de- 
fined in Eq. (l).] Here 2 is the partition function, 
which ensures normalization of the probability func- 
tion. Thus the most probable energy with a certain 
similarity to the native structure is given by 

and the number of thermally occupied states is 

(6) 

The entropy of the thermally occupied structures 
that have a certain similarity to the native structure 
is 

We see from these expressions that there are two 
opposing thermodynamic forces involved in the fold- 
ing process. The growth in the number of thermally 
occupied states as we move away from the native 
structure favors a large number of highly disordered 
configurations. On the other hand, the decreasing 
average energy as one approaches the native struc- 
ture favors folded configurations. These two features 
are combined by thinking of the free energy as a 
function of the configurational similarity n a t  a 
fixed temperature T, 

This free energy function is the logarithm of the 
thermodynamic weight of states with a certain sim- 
ilarity to the native structure. We see in Figure 4 a 
representation of this free energy and of the proba- 
bility of occupation. At high temperatures, the band 
of states with nearly no native structure is favored, 
corresponding to an  unfolded state. At very low tem- 
peratures the folded configurations would be favored 
and, in between, a double minimum effective free 
energy pertains. The folding temperature is deter- 
mined by the condition that the two global minima 
be equal in thermodynamic weight. The unfolded 

minimum can correspond to two distinct sets of 
states corresponding to different values of a distinct 
order parameter, the radius of gyration.6 If the ran- 
domness is large and nonspecific interactions are 
important, or the chain is highly hydrophobic in 
composition, this minimum itself can be collapsed. 
This may well correspond to the molten globule 
state.6s On the other hand, if there is little average 
driving force to collapse due to nonspecific contacts 
[AE(nI2 small] the disordered configurations will be 
noncompact and this corresponds to the traditional 
denatured random coil state. We note that many in- 
termediate degrees of order can exist in the molten 
globule phase and these can and should be taken 
into account in a complete analysis. However, the 
simple one-parameter analysis captures the essen- 
tials and should fit data over an appropriately re- 
stricted range of thermodynamic conditions. 

QUANTITATIVE ASPECTS OF THE 
KINETICS OF A FOLDING PROTEIN 

The theoretical formulation of the kinetics of pro- 
tein folding differs from the classic formulation of 
transition state theory in some important ways. 
Most of our ideas concerning rate theory had their 
origin in studies of gas phase reactions of small mol- 
ecules and simple unimolecular reactions in liq- 
u id~ .~’ ,~’  Four important properties of these simple 
reactions will illustrate the most important points of 
contrast with protein folding. First, in the simple 
reactions solvent is either absent or plays a passive 
role, e.g., as a heat bath or source of friction. Second, 
the initial state, final state, and transition state all 
refer to single, fairly well-defined structures so en- 
tropy considerations are not important. Third, there 
is a single, fairly well-defined reaction coordinate. 
Fourth, the effective diffusion coefficient for moving 
along the reaction coordinate changes very little as 
the system moves from the initial to the final state. 
Protein folding is completely different from these 
simple  reaction^.^,^^,^^,^^ First, in protein folding, 
the solvent plays a vital role in stabilizing the folded 
state. As explained above, the important role of the 
solvent means that the potential of mean force, 
which here plays the role of the energy as a function 
of configuration, is a function of temperature and 
solvent conditions. Second, the initial denatured 
state, final folded state, and transition states all re- 
fer to sets of protein structures, so the configura- 
tional entropy of the protein chain is a necessary 
part of the description of protein folding. Third, 
there are many possible reaction coordinates and 
pathways. Fourth, the dynamics of the protein chain 
changes qualitatively during the course of folding; 
in particular, an  open chain has far greater thermal 
motion than a collapsed chain. Therefore, the effec- 
tive diffusion coefficient for motion along a reaction 
coordinate for folding probably can also change 
qualitatively between the initial and final states. 
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Intermediate 
T 

Fig. 4. Sketches of the free energy (solid lines) and probability 
of occupation (dashed lines) against a folding reaction coordinate 
for three different temperatures. The value n = 1 corresponds to 
the native structure. The top sketch shows the situation for high 
temperatures, where the free energy function has a single mini- 
mum near n = 0, i.e., in highly unfolded states. Here the molecule 
is far more likely to be in an unfolded conformation than it is to be 
a conformation similar to the native structure, as it is shown by the 

Below we will discuss the modifications to  the tran- 
sition state theory framework that are needed to de- 
scribe protein folding kinetics. 

The gradient of the free energy function F(n),  de- 
scribes the overall tendency for the system to move 
and change its value of n. The average flow in con- 
figuration space will tend to minimize the free en- 
ergy. For typical forms of the expressions for the 
energy and the entropy as a function of similarity to 
the native state, n, F(n)  will tend to have one or two 
minima, so the system will be unistable or bistable. 
If the system is unistable and the conditions are fa- 
vorable for folding, then the single minimum of the 
free energy function must occur near the native 
state. A unistable free energy function with its min- 
imum near the native state would require a huge 
thermal driving force. We call this situation “down- 
hill” protein folding. Downhill folding is rare in slow 
timescale in vitro protein folding experiments car- 
ried out in conditions near the transition between 
equilibrium folding and equilibrium unfolding. 

dashed lines. As the temperature is lowered, the free energy de- 
velops a second minimum, one of them similar to native structure. 
There is a a free energy barrier between these minima. At these 
temperatures the probability of occupation is bimodal, with one 
unfolded and one nearly native peak. Finally at low temperatures, 
there is again a single minimum in the free energy, but this min- 
imum is near the native structure. Here the molecule is very sim- 
ilar to the native structure. 

Downhill folding may be common in strongly nativ- 
izing conditions, in the initial stages studied in fast 
timescale folding experiments,61 and in vivo. In 
downhill folding the protein folds by making a 
straight run down the average free energy gradient. 

An analogy with transition state theory6’r7’ 
yields a simple estimate for the folding rate, or 
equivalently, the folding time.5 In transition state 
theory the reaction rate is given by the rate of going 
through the bottleneck for the reaction. Tradition- 
ally, this bottleneck is the highest free energy state 
in the reaction coordinate pathway from the reac- 
tant state to the product state. This bottleneck is 
called the transition state. In transition state theory 
the rate of going through the transition state de- 
pends on the free energy barrier, i.e., the difference 
between the transition state free energy and the re- 
actant state free energy. In downhill folding there is 
no free energy barrier. However, there is a bottle- 
neck for folding in downhill folding, because the ef- 
fective diffusion coefficient for motion along a reac- 
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tion coordinate changes qualitatively during the 
course of folding; the region with the smallest diffu- 
sion coefficient is the kinetic folding bottleneck. Let 
E(n) denote the typical lifetime of an individual mi- 
crostate with a similarity n to  the native structure. 
This lifetime is a measure of the rate of motion along 
the reaction coordinates for folding; the larger f the 
smaller the effective diffusion coefficient and the 
slower the folding rate. The kinetic bottleneck for 
folding occurs a t  the value of n that maximizes E(n), 
which we denote by &in. The subscript kin stands 
for kinetic and the reason for using this subscript 
will become apparent below. Therefore, a simple es- 
timate of the folding time, T, in analogy with tran- 
sition state theory, is given by 

Notice that the time in Eq. (9) is a lower bound on 
the folding time, hence an upper bound on folding 
rate. This property is expected because the transi- 
tion state technique gives upper bounds on reaction 
rates.70 We shall discuss the meaning of nkin in more 
detail below. For now notice that nkin is not the lo- 
cation of the top of the free energy barrier, as in 
conventional transition state theory. 

The roughness of the energy surface determines 
the lifetime of individual microstates. The detailed 
distribution of these lifetimes can be determined 
from a detailed analysis and it is rather broad. How- 
ever, a reasonable first approximation to the typical 
escape time is easy to obtain. Most minima along a 
perimeter of constant n are surrounded by ordinary 
states with nearly the average energy, E(n) .  Thus 
the barrier height for hopping is E - Ern.+,. = (AEI 
k,T)'. This gives an escape time with a super-Ar- 
rhenius temperature dependence 

3 

f 

The prefactor to is the timescale for a typical motion 
of a large segment of the chain. It depends on local 
barriers and on the solvent viscosity, which is itself 
temperature dependent. Isoviscosity studies of pro- 
tein folding are therefore quite interesting. The non- 
Arrhenius temperature dependence exhibited here 
is sometimes called the Ferry law7' and it describes 
the slow dynamics of many glassy systems. As ex- 
pected, increasing the roughness of the energy land- 
scape greatly slows down folding. 

What happens to  the escape process as the tem- 
perature is lowered? The above estimate assumes 
many channels for escape exist and an average one 
can be taken. But as the temperature is lowered it 
becomes preferable to find an unlikely channel with 
an improbably low barrier. A subtle analysis5 shows 
that, for a given value of n, the escape time goes no 
lower than a "search" time 

This is the average number of steps taken by the 
protein to find a state of negligible barrier. This is 
the Levinthal time for searching states at  fixed pe- 
rimeters, i.e., fixed value of n. For a given n this 
escape time is reached at  a temperature 

The analysis of Bryngelson and Wolynes also shows 
that for T > Tg(n) the protein has kinetic access to 
representative section of the perimeter (see Fig. 2) 
so the behavior of a typical protein molecule can be 
replaced by the behavior of a statistical ensemble. In 
this case Eqs. (9) and (10) for the folding time are 
valid.* For T < Tg(n) the protein has kinetic access 
to  very few structures. These structures are not nec- 
essarily representative of the statistical ensemble, 
so the proteins behavior is dominated by the details 
of its specific energy landscape. In this case Eqs. (9) 
and (10) for the folding time must be modified. Tech- 
nically, the kinetic behavior of the protein molecule 
becomes non-self-averaging, a term we discuss later 
in this section. 

A system with a fixed n also undergoes a thermo- 
dynamic second-order phase transition a t  T,( n)  in 
which the protein is effectively frozen into one or few 
of a small number of low energy states. Using Eq. 
(61, we see that for T 5 Tg(n), the number of ther- 
mally occupied states no longer scales exponentially 
with the size of the protein.$ Conversely, as a pro- 
tein folds a t  a fixed temperature T ,  the similarity to  
the native structure, n, becomes larger. However, 
the entropy, S[E,,,.(n),nl, decreases as n becomes 
larger, i.e., there are fewer states available to  the 
protein molecule as it approaches its native struc- 
ture. A typical protein runs out of entropy at  some 
value ng of n. This vanishing of configurational en- 
tropy is precisely the previously noted second-order 
phase transition, this time taking T rather than n to  
be constant. The critical values of the temperature 
and the fraction native structure are related by T = 
Tg(ng), where T is the temperature a t  which the 
folding experiment is carried out. In addition, Bryn- 
gelson and Wolynes have shown that the glass tran- 
sition can occur only for a protein that already has 
collapsed.6 Therefore, for any given temperature T ,  
for values of n 5 ng(T) the kinetic description pre- 
sented in this section is valid and the folding kinet- 
ics are self-averaging, and for n > ng(T) the protein 

$The more subtle analysis by Bryngelson and Wolynes shows 
that the full time dependence o f t  is slightly more complicated 
For T > 2T,(n), r(n) = t,e~p[(AE(n)/k,T)~l, as in Eq. (10) 
above, but for 2T (n)  > T > T (n), this equation must be mod- 
ified to  t (n)  = t,c?xp[S,(n) + filk,T,(n) - llkBT)2hE(n)21. 

$Applying Eq. (6) literally would imply a thermally accessi- 
ble perimeter with less than one state because the entropy 
analysis neglects finite size corrections. 
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is in the glassy phase, and its kinetics becomes non- 
self-averaging . 

For bistable systems, there are two minima of free 
energy with a maximum of free energy between 
them. In folding conditions the minimum close to  
the native state has a lower free energy than the 
minimum corresponding to the unfolded state. The 
free energy barrier for folding, Fbarrier, is given by 
the difference between the free energy of the un- 
folded minimum, F(nuf) and the free energy of the 
barrier top, F(&). The subscript th stands for ther- 
modynamic and the reason for using it will become 
clear momentarily. Systems to the right of the top of 
the free energy barrier, i.e., with n > nib, tend to  
become folded; those to the left, i.e., with n < nib, 
would become unfolded on the average. A straight- 
forward generalization of transition state theory5 
indicates that the overall folding time is given by 

3 whereFLi, = F(niin) - F(n,,) and nkin is the value of 
n that maximizes the above expression for T. One 
may think of &in as the similarity to  the native 
state where the bottleneck for folding occurs. The set 
of states with n = nkin acts like the transition state 
for folding when we consider influences of external 
agents on rates. 

Although Eq. (13) for the folding time has the 
same form as analogous expressions from tradi- 
tional transition state theory, there are three impor- 
tant differences. First, the prefactor is Z(niin), the 
typical lifetime of an individual microstate at  a sim- 
ilarity nkin to  the native structure. The correspond- 
ing prefactor in absolute rate theory would be an 
expression involving only fundamental constants. 
The need for the prefactor based on the lifetime of 
the microstates stems from the greater complexity of 
protein folding as compared with the gas phase re- 
actions which absolute rate theory was originally 
designed to describe. This lifetime strongly depends 
on the roughness of the surface. Ignoring this fact, 
we see that the folding is considerably less than the 
Levinthal estimate, because some of the configura- 
tional entropy loss is balanced by the gain in energy 
as the native structure is approached. The second 
difference is that nkin, the analogue of the transition 
state in Eq. (13) for the folding time, is determined 
by maximizing the entire folding time expression in 
this equation. In contrast, in traditional transition 
state theory, the transition state is a maximum of 
the free energy, which would here correspond to 
n$. If the average lifetimes Z(n) were constant, i.e., 

t independent of n, then nkin would equal nth. How- 
ever, in protein folding, we expect the average life- 
times f ( n )  to vary strongly with n, so nkin will not 
always equal nth and the difference can be large and 
important. More concisely, the position of the kinetic 

t 
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folding bottleneck, nLin, is not necessarily the same 
as the position of the thermodynamic folding bottle- 
neck, &. Third, whereas in traditional transition 
state theory the transition state typically is a spe- 
cific configuration, the transition state in our fold- 
ing time expression (13) corresponds to an entire 
band of states in the full configuration space and 
should not be thought of as a unique configuration. 
Furthermore, since the potential of mean force of the 
protein chain is dependent on temperature and sol- 
vent conditions, the location of the transition state 
band will change as the temperature and solvent 
conditions change. This situation is in marked con- 
trast to the case of small molecules in the gas phase 
in which the transition state can be thought of as a 
single structure which is fixed for all reaction con- 
ditions. 

Notice that the free energy gradient provided by 
the minimal frustration principle leads to multiple 
paths approaching this transition state surface as 
long as the glass transition has not been reached 
and that this is crucial to overcoming the entropy 
loss on folding. The expected temperature depen- 
dence of the folding time is obtained by combining 
Eq. (13) for the folding time and Eq. (10) for the 
average lifetime of a microstate. The result, after 
taking the logarithms in order to simplify the resul- 
tant expressions, is 

Notice that if F t i n  and hE(n$,) are assumed to be 
temperature independent, then Eq. (14) implies that 
an Arrhenius plot of folding time versus inverse 
temperature would be curved, and in fact parabolic. 
Such curved Arrhenius plots are frequently ob- 
served in protein folding  experiment^.^^ Unfortu- 
nately, these plots can not be used to derive values 
for Fkin and hE(nki,) directly. First, our discussion of 
microstate lifetimes is rather rough. A more careful 
treatment shows that the exponent in the expression 
for the lifetimes (10) must be replaced with a gen- 
eral quadratic in hE(n)/k,T when the system gets 
close to the glass transition. Second, and more im- 
portant, F ;in does depend on temperature, because 
the free energies of the unfolded state and the fold- 
ing bottleneck, the position of the folding bottleneck, 
the potential of mean force of the protein molecule 
all change with temperature. Similarly, hE(nkin) 
also depends on temperature. The main point here is 
that a curved Arrhenius plot of the folding time 
should be expected as an elementary consequence of 
energy landscape properties of protein folding. 

The glass transition, discussed above for downhill 
folding, also occurs in systems with bistable free en- 
ergy functions, in exactly the same way. As before, 
when the system T > T,(n) the behavior of a typical 

3 t 

I: 
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protein can be replaced by the behavior of a statis- 
tical ensemble, so Eqs. (13) and (14) for the folding 
time are valid. For T < T J n )  the kinetics are dom- 
inated by the details of the energy landscape, so Eqs. 
(13) and (14) for the folding time must be modified. 
The kinetic behavior in this glassy regime is non- 
self-averaging, a term we now discuss. 

An important feature of protein folding below the 
glass transition is non-self-averaging behavior. The 
idea of non-self-averaging is best approached by first 
discussing its opposite, self-averaging behavior. In 
simple terms, a self-averaging property is one that 
depends on the overall composition of an object, 
rather than its detailed structure. An illustration of 
this idea is provided by alloys, for example, brass, an 
alloy of copper and zinc. No order determines 
whether a particular lattice site is occupied by a 
copper atom or a zinc atom, so each piece of brass is 
different on the atomic scale. However, in spite of 
these differences, all pieces of brass with sensibly 
the same composition share many properties, for ex- 
ample, hardness, density, electrical conductivity, 
etc. These properties are called self-averaging be- 
cause the value of the property, say hardness, of a 
member of a statistical ensemble, here pieces of 
brass with the same composition, is almost always 
nearly equal to the average value of that property 
over the statistical ensemble.** Notice that self-av- 
eraging is a characteristic of the ensemble and the 
property taken together. Going back to the alloy ex- 
ample, density is a self-averaging property for all 
pieces of brass with a specified composition, but is 
not a self-averaging property for all pieces of metal. 
As a biochemical example, consider the ensemble of 
amino acid sequences with the same length and 
amino acid composition as hen lysozyme. The ability 
to form a collapsed globule with approximately the 
radius of gyration as a lysozyme molecule is proba- 
bly a self-averaging property for this ensemble, 
whereas the ability to fold to  a structure that hydro- 
lyzes glycosidic bonds is almost certainly a non-self- 
averaging property. 

The presence or absence of self-averaging of a 
given property has important practical implications. 
If a property is self-averaging over some ensemble, 
then studying that property in one member of the 
ensemble suffices to  learn about the property for all 
members of the ensemble; if the property is non-self- 
averaging, then studying that property in one mem- 
ber of the ensemble provides no information about 
the property for other members of the ensemble. The 
question of whether or not a given property is self- 

**More precisely, consider a statistical ensemble of objects, 
and some property of the objects in the ensemble. A property is 
called self-averaging if the fluctuations of the value of that 
property in the members of the statistical ensemble are small 
compared to the average value of the property over the ensem- 
ble. More detailed discussions of self-averaging can be found in 
the references on spin glasses that we cited. 

averaging is also intimately related to the question 
of whether or not that property is strongly affected 
by mutations. A mutation will create a new se- 
quence, i.e., a new member of the ensemble. A self- 
averaging property will behave in the same way in 
the mutant as in the rest of the members of the 
ensemble, but a non-self-averaging property will be- 
have differently in each member of the ensemble, 
including the mutant. 

In protein folding there are several different en- 
sembles over which one can average, a few of which 
we now list, going from the largest, most general 
ensemble to the smallest, most specific ensemble. 
First, there is the most general ensemble relevant to 
protein folding, that of all possible polymers of 
amino acids. Experiments on random polypeptide 
sequences explore this ensemble.35 Next is the set of 
ensembles of amino acid sequences with fixed amino 
acid composition. Experiments that investigate ran- 
dom sequences with only a few types of amino acids 
have studied instances of these  ensemble^.^^,^^ In- 
terestingly, there is some evidence from computer 
simulations of protein folding that the collapse time 
for a sequence depends only on its composition; this 
evidence indicates that collapse time may be a self- 
averaging property over these  ensemble^.^' Finally, 
there are the ensembles of sequences that fold to a 
specific structure, e.g., the different lysozyme se- 
quences mentioned in the introduction. These en- 
sembles are studied in research programs that in- 
vestigate the properties of different mutants of a 
particular protein. 

How do these considerations of the location of a 
second-order phase transition corresponding to  an 
ideal glass transition along the folding coordinate 
relative to the extrema of the unimodal and bimodal 
free energy functions affect the kinetics of folding? 
We see that there are several distinct folding sce- 
narios, which are illustrated in Figure 5 and which 
we now discuss. As stated above, for a unimodal free 
energy function, downhill folding, the rate of folding 
will depend mainly on the lifetimes of the individual 
microstates. We call this situation a Type 0 scenario. 
It is analogous to spinodal crystallization studied in 
materials science.75 In this case the unfolded state is 
unstable; from almost any configuration there is a 
conformational change that will lower the energy 
with little cost in entropy. Nevertheless, this type of 
folding transition can still have a folding bottleneck, 
like the folding transitions in a bimodal free energy 
function, if the diffusion constant becomes small as 
in a glass transition. The difference here is that the 
folding bottleneck in a Type 0 transition will be en- 
tirely kinetic, so nkin will occur at  the maximum of 
t(n). In contrast, for a bimodal free energy function 
the folding barrier will have both kinetic and ther- 
modynamic contributions. The Type 0 scenario can 
further be broken into two subclasses. In the first 
subclass, which we call Type OA, the glass transition 

I: 
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Fig. 5. Schematic illustrations of the folding scenarios dis- 
cussed in the text. Each sketch shows a qualitative plot of the free 
energy against the folding coordinate. In the type 0 scenarios 
shown at the top, the free energy function has only one minimum 
near the folded state, i.e., n = 1. In a type OA transition, shown at 
the left, there is no glass transition. In a type OB transition, shown 

the free energy has two minima, an unfolded one and a folded 
one, and there is no glass transition during the folding process. 
The free energy functions in the type II scenarios, shown at the 
bottom of the figure, also have two minima but the protein under- 
goes a glass transition during the folding process. In a type IIA 
scenario, shown at the left, the glass transition occurs after the 

at the right, at some value of the folding coordinate, ng, the Protein 
undergoes a glass transition and it exhibits the glassy dynamics 
described in the text for the remaining of the folding process, n > 
ng. The type I scenario is shown in the middle of the figure. Here 

thermodynamic folding bottlenec; at n&. In a type IlB, shown at 
the right, n& , , making the folding protein glassy before the 
thermodynamic f&ng bottleneck is reached, 

does not occur a t  any value of n. In this case the 
folding is fast and dominated by a single rate, the 
rate of going down the free energy gradient. The 
kinetics in this regime are self-averaging. In the sec- 
ond subclass, which we call Type OB, the glass tran- 
sition occurs before the protein reaches its native 
state. Then the first part of the folding is a rapid 
descent down the free energy gradient, as before, but 
the glass transition intervenes and slows the folding 
considerably. The overall kinetics is slower and mul- 
tiexponential because different protein molecules 
find themselves stuck in a few different microstates 
after the glass transition, and each of these states 

will fold at a different rate. Some of the microstate 
lifetimes can be very long. These long-lived mi- 
crostates will be observable as kinetic intermedi- 
ates. The paucity of occupied microstates will lead to 
discrete pathways as shown schematically in Figure 
6. The kinetic behavior is strongly non-self-averag- 
ing, so mutations easily change the folding kinetics. 
Intermediates in one form of the protein are absent 
in others. 

The kinetics of the folding of proteins with bimo- 
dal free energy functions fall broadly into two 
classes. In the first of these, which we call Type I, 
there is no glass transition at any point in the fold- 
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Fig. 6. A schematic representation of the emergence of fold- 
ing pathways. In this figure the native structure is on the left, so 
that n increases from right to left. Before the folding protein 
reaches the glass transition there are many accessible paths be- 
tween conformations. In this regime each molecule would take a 
different path as it approached the native structure. After the fold- 
ing protein goes through the glass transition it has access to only 
a few paths, so most molecules will take one of a few, or perhaps 
only one, path to the native structure. 

ing, just like the Type OA folding scenario noted 
above. Type I scenarios are analogous to nucleation 
followed by rapid In this case the folding 
is dominated by a single rate, the folding time being 
given by Eq. (13). The protein has kinetic access to  a 
representative section of the folding bottleneck, so 
the rate of folding can be calculated by considering 
the rate of folding for a statistical ensemble of struc- 
tures at the bottleneck. In this regime, the protein 
can take many possible pathways through the bot- 
tleneck, so the overall folding time will be indepen- 
dent of the initial unfolded configuration of the pro- 
tein. The folding kinetics are self-averaging, so 
mutations will have only small effects on folding 
rates.tt In the other class the glass transition occurs 
at some point in the folding process. We call these 
folding events Type 11. Type I1 folding processes are 
analogous to nucleation followed by slow growth: a 
situation much studied in the metallurgy of alloys.75 
Type I1 folding scenarios can be broken into two sub- 
classes, depending on where the glass transition oc- 

"To be more precise, rates of individual events depend on the 
exponentials of free energies. Above the glass transition these 
free energies should all self-average and the significant rates 
will have a log-normal distribution. A few factors of two 
change in the rate is not considered significant here. In the 
glassy phase a much wider distribution of the logarithm of the 
rate is anticipated, as pointed out by Bryngelson and Wolynes.' 

curs relative to the thermodynamic bottleneck loca- 
tion nib. Recall that n& is the location of the 
maximum of the free energy and need not be the 
same as the kinetic bottleneck coordinate n:in that 
appears in Eqs. (9) and (13) for the folding time. 
Thus, for folding at a fixed temperature in a situa- 
tion where a glass transition occurs, we expect to  
find two distinct kinetic scenarios, one, which we 
call Type IIA, occurs when nB < ng, and the other, 
which we call Type IIB, occurs when nth 2 ng. 

As the roughness of the energy landscape is in- 
creased, a glass transition occurs between the fold- 
ing bottleneck and the final folded state, so that dis- 
crete pathways occur after the transition state. We 
call this situation a Type IIA scenario. In this re- 
gime passage through the folding bottleneck will be 
dominated by a single rate, but there may be some 
nonexponential behavior, and discrete pathways 
and kinetic intermediates will be observed in the 
late stages of folding. 

In the Type IIB scenario the protein has already 
gone through the glass transition when it reaches 
the maximum of free energy. Since the protein can 
take only a few pathways after the glass transition, 
and these pathways can be different enough to lead 
to wildly different folding times, the overall folding 
time will strongly depend on which of the few paths 
to  the folded state is taken. Each of these paths will 
have its own kinetic transition state and the free 
energies of these states will differ appreciably, i.e., 
they will not self-average. The importance, and even 
the meaningfulness, of the typical kinetic transition 
state, &in, is diminished considerably in this re- 
gime. Therefore we have used the location of the 
glass transition relative to nth rather than nkin in 
defining the difference between the Type IIA and 
Type IIB scenarios. 

$ 

THE PHASE DIAGRAM AND PROTEIN 
FOLDING SCENARIOS 

The phase diagram is a powerful tool for under- 
standing protein folding. It reduces much of the dis- 
cussion about folding scenarios in the previous sec- 
tion to a single, clear, coherent picture which is 
useful for thinking about and planning experiments. 

The simplified viewpoint of protein folding, using 
the energy landscape framework that we discussed 
in the last section, can be used to classify different 
mechanisms of protein folding in the laboratory and 
in computer simulations. The analysis discussed 
above uses only a single parameter, n, to character- 
ize the difference between the native structure and 
the unfolded structures. In fact, native proteins dif- 
fer from unfolded ones in several ways, so this re- 
quires the introduction of several different similar- 
ity measures in thinking about folding processes. It 
is important, however, that the number of addi- 
tional parameters is relatively small, thus giving a 
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Fig. 7. Phase diagram for a folding protein. The horizontal axis 

is the energy landscape roughness parameter, A€, discussed in 
the text. The vertical axis is the temperature divided by the stability 
gap €,. The stability gap is the energy gap between the set of 
states with substantial structural similarity to the native state and 
the lowest of the states with little structural similarity to the native 
state. The collapse transition and the (first-order) folding transition 
are represented by solid lines and the (second order) glass tran- 
sition is represented by a dashed line. In comparing this phase 
diagram with experimental phase diagrams, one must bear in 
mind that both A€ and €, are temperature dependent because of 
the hydrophobic force. In addition, the collapse transition depends 
on the average strength of the hydrophobic force, and this is both 
temperature and pressure dependent. The average strength of 
the hydrophobic force could be considered as a third dimension in 
the phase diagram 

reduced description of the folding process. Indeed, 
many of the discussions of folding pathways have 
concentrated on these additional similarity mea- 
sures or order parameters. Thus in many pictures of 
protein folding, e.g., the framework one 
gives considerable emphasis to  the initial formation 
of secondary structures. In other scenarios, the col- 
lapse and formation of secondary structures are con- 
sidered to be separate events.6 Additionally, pro- 
teins may consist of subdomains for which we may 
discuss the tertiary structure formation separately. 
This is particularly important in hierarchical pic- 
tures of protein folding.77 With each of these simi- 
larity measures we can ask the way in which the 
formation of order is related to the roughness of the 
energy landscape and whether the transition occurs 
through many pathways or through a small number 
of distinct pathways. It is helpful to  consider a phase 
diagram like the one illustrated in Figure 7. 

In this phase diagram, we plot the possible equi- 
librium states of a protein as a function of temper- 
ature and roughness of energy landscape. The phase 
diagram contains a region of random coil, a col- 
lapsed phase, a folded region with transition lines 
between these places, as well as a dotted line indi- 
cating the presence of a frozen glassy state. 

A given protein will exist at equilibrium some- 
where in this phase diagram, thus the diagram tells 
us the final state which we would obtain in an ex- 
periment. The folding process begins by starting in a 
configuration characterized by one of the regions on 
this diagram, but is carried out at a temperature 
such that the folded protein is the lowest free energy 
state. The roughness of the energy landscapes is im- 
portant in determining the equilibrium phase but 
plays a bigger role in the kinetics of the folding pro- 
cess as described before. In the lefthand part of the 
diagram, folding will occur by a Type I mechanism 
in which discrete pathways are not observed. As the 
roughness is increased, the folding can occur by a 
Type IIA mechanism in which discrete pathways oc- 
cur after the transition state. As the roughness of 
the energy landscape increases more, and the equi- 
librium glass transition occurs before the transition 
state is reached, the folding occurs through a Type 
IIB mechanism in which discrete pathways are ob- 
served and misfolded states play a role in the dy- 
namics. Structurally unique thermodynamic transi- 
tion states can occur only if T < T(n&,), i.e., if the 
folding is Type IIB, because that is the only case 
where there are order one accessible paths through 
the folding bottleneck. In all other folding scenarios, 
there are many accessible paths through the folding 
bottleneck, hence many possible transition states. 

The temperature a t  which the folding experiment 
takes place also plays an important role in whether 
a Type 0, Type I, or Type I1 scenario for folding is 
observed. At low temperatures, (relative to the 
roughness energy scale) one expects to  see nonexpo- 
nential kinetics characterizing a Type IIB scenario. 
On the other hand, at higher temperature, a t  the 
midpoint of the folding transition, one expects Type 
I or IIA mechanisms to be more prevalent. Since 
ruggedness appears only when contacts are made, 
when there is little frustration, as well as little av- 
erage driving force toward hydrophobic collapse, a 
Type I mechanism is most probable. This is very 
close to the framework or diffusion colli- 
s i o n - p i c t ~ r e ~ ~ - ~ ~  that was so often thought to de- 
scribe protein folding. In the original versions of 
such models, only correct structures are formed ini- 
tially and these can dock to form completed struc- 
tures. Such a highly unfrustrated situation seems to 
be uncommon and certainly does not occur in the 
computer simulations of protein-like models. 

Good folding sequences are ones that have a 
strong free energy gradient leading to the ground 
state structure. To achieve this they must separate 
in energy the native conformation and those confor- 
mations that are structurally similar to the native 
conformation from the bulk of most of the other con- 
formations with no structural similarity to the na- 
tive conformation. Goldstein et al. have shown that 
this qualitative criterion is equivalent to finding se- 
quences that maximize TJT,  for a suitable simpli- 
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fication of the Bryngelson-Wolynes rnodeLs3 Notice 
that the energy gap that is being maximized when 
TJT, is maximized is not the energy gap between 
any two specific states, but rather the gap between 
the set of states with substantial structural similar- 
ity to  the native state and the lowest of the set of 
states with little structural similarity to the native 
state. We call this gap the “stability gap” (EJ .  The 
stability gap should not be confused with the energy 
gap between the native configuration and the con- 
figuration with the next highest energy. This state 
will usually be native-like itself. There are too many 
fluctuations in the folded state for this two-configu- 
ration energy gap to have any significance for pro- 
tein foIding or ~ t a b i l i t y . ~ ~ , ’ ~ , ~ ~ . ~ ~  In fact, Frauen- 
felder and collaborators have interpreted the results 
of their experiments on folded proteins in terms of a 
hierarchy of “substates.” These substates correspond 
to slightly different structures found in the popula- 
tion of folded proteins.” Evidence for the highest 
level of this hierarchy has been seen in protein fold- 
ing  simulation^.^^ Unfortunately, this issue of en- 
ergy gaps has been clouded by lattice simulations 
that have studied the energy spectrum of only the 
maximally compact states.71, Since the maximally 
compact states are a small fraction of all possible 
states and since they are often not dynamically con- 
nected (in the sense described in the second sec- 
tion),l57 40 the interpretation of the results of these 
simulations requires more subtlety than has been 
found in the literature so far. Notice, however, that 
since local excitations from a maximally compact 
state are not themselves maximally compact, the en- 
ergy gap between the native state and the next low- 
est energy maximally compact state is often corre- 
lated with the stability gap. Thus, the results of 
these simulations can be interpreted as a confirma- 
tion of the older and more general idea that the se- 
quences with large stability gaps fold quickly at  the 
equilibrium folding t e m p e r a t ~ r e . ~ - ~ , ~ ~ v ~ ~  

In the Bryngelson-Wolynes energy landscape the 
stability gap is a tautological consequence of the 
greater degree of stability of native-like interactions 
demanded by the principle of minimal frustration. 
Goldstein et al. calculated a set of parameters that 
maximized T,IT, for the model used in their protein 
structure prediction algorithm, and found that these 
parameters gave excellent results for practical 
structure prediction, in accord with the predictions 
of the theory. In addition, molecular dynamics cal- 
culations using associative memory Hamiltonians 
optimized in this way reliably gave native-like 
 structure^.^^^^^ These results provide independent 
evidence that sequences that satisfy this criterion 
(of having a large stability gap) should be good fold- 
ing sequences. This work also is a good illustration 
of the power of using energy landscape ideas to help 
solve practical protein folding problems. We also 
mention that the stability gap idea has been used by 

Wodak and co-workers to predict persistent second- 
ary structures in small peptides relevant to  early 
folding events.87 

The phase diagram, of course, becomes more com- 
plex as additional order parameters or similarity 
measures are used to characterize the folded states. 
The phase diagram is a useful way of thinking about 
any folding process because it allows us to  consider 
the couplings between the various order parameters 
as well. For instance, as one sees in the computer 
simulations, one can first have a collapse which is 
ascribed by a single-order parameter, radius of gy- 
ration, followed later from this collapsed phase by 
a transition to a unique folded protein struc- 
tUre.4038-90 The coupling between these two param- 
eters is crucial in obtaining that sort of description. 
The so-called molten globule intermediates which 
are often an ensemble of individual configurations 
really should be described by these additional order 
parameters.68 

ENERGY LANDSCAPE ANALYSIS OF 
FOLDING SIMULATIONS 

Simulations of simple protein-like lattice models 
provide an ideal ground to illustrate the energy land- 
scape ideas. Lattice models have a venerable his- 
tory.50-52,91-100 There is widespread agreement that 
they capture some of the underlying physics of pro- 
tein folding. There are also excellent reviews that 
discuss lattice simulations in the context of the 
general problem of understanding protein fold- 

any groups have interpreted their 
simulation results using some of the qualitative and 
semiquantitative ideas of energy landscape analysis, 
finding features in agreement with the overall pic- 
ture that we have just d i s ~ ~ s s e d . ~ ~ - ~ ~ ~ ~ ~ , ~ ~ , ~ ~ , ~ ~ ~ , ~ ~ ~  
Here we illustrate this kind of discussion by focusing 
on some recent results of Socci and Onuchic which 
find evidence for specific features arising from en- 
ergy landscape analysis.” In addition, these simu- 
lations provide an excellent example of the kind of 
quantitative analysis which should be carried out for 
real experimental data. We will use simplified quan- 
titative relations that can be deduced from the en- 
ergy landscape analysis. This sort of quantitative 
analysis should also be carried out for laboratory 
experiments, but in the laboratory the temperature 
dependence of the various free energy contributions 
must also be included explicitly for a fully convincing 
analysis. Simulations based on reduced models avoid 
these issues since the energy function is itself not 
temperature dependent. 

The simulations were performed on polymers that 
were 27 monomers long which have maximally com- 
pact states of 3 x 3 x 3 cubes. Because the configura- 
tions on the 3 x 3 x 3 cube can be completely enumer- 
ated in a reasonable amount of computer time, the 
energy landscape among the maximally compact 
states can be explored in great detail. This 27 mono- 

ing.63,101,102 M 
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TABLE I. Various Sequences Used* 

Run Sequence Emin Tmin T, Tf 
002 ABABBBBBABBABABAAABBAAAAAAB - 84 2.0 x 107 1.00 1.285 (15) 
004 AABAABAABBABAAABABBABABABBBB - 84 1.6 x lo7 0.96 1.26 (1) 

1.15 (2) 005 AABAABAABBABBAABABBABABABBB -82 2.3 x 107 0.98 
006 AABABBABAABBABAAAABABAABBBB -80 5.2 x 107 1.07 0.95 (6) 
007 ABBABBABABABAABABABABBBABAA -80 9.3 x lo7 1.09 0.93 (5)  
013 ABBBABBABAABBBAAABBABAABABA - 76 9.7 x 107 1.01 0.83 (5) 
*The last four (005, 006, 007, 013) were generated at  random. Sequence 002 is from ref. 132. Sequence 004 is a single monomer 
mutation of 005 (B13 + A). Both 002 and 004 have the lowest energies possible for the potential used and have native states that are 
completely unfrustrated, i.e., very native contact is individually stabilizing. T,~,, is the fastest folding time for each sequence. T,  is 
the glass transition temperature (calculated with a T,,, = 1.08 x lo9). Tf is the folding temperature calculated using the Monte 
Carlo histogram method. The numbers in parentheses indicate the uncertainty of the last digit. 

mer cubic simulation has been a paradigm of study 
in this field because of this feature. 54355,71786~105 The 
simulations of Socci and Onuchic contain two mono- 
mer types. Pairs of monomers that were nearest- 
neighbors on the lattice but not connected along the 
chain contributed an interaction energy to the po- 
tential. The potential for the two monomer code was 
-3 for contacts between monomers of the same type 
and -1 for contacts between different types. The 
folded configuration was taken to be the maximally 
compact configuration with the lowest energy. 

The characteristic energy scales and tempera- 
tures for different sequences are easily obtained for 
these models. The folding temperature, T,, may be 
defined in the usual way as the temperature at  
which population in the folded configuration is 
equal to  the populations in all other configurations. 
These populations can be obtained by a Monte Carlo 
sampling procedure for each of the sequences. The 
folding temperatures correlate rather well with the 
energy of the folded configuration. This is shown in 
Table I. Figure 8 shows the equilibrium folding 
curves for these sequences. 

A kinetic glass transition temperature can be de- 
fined without appealing explicitly to  the energy 
landscape analysis. Just as in a laboratory, a kinetic 
glass transition temperature is defined by asking 
where a characteristic timescale in the problem ex- 
ceeds some large value. In the simulations the max- 
imum running time was T,,, = 1.08 x lo9 Monte 
Carlo steps. This number was chosen because it was 
significantly longer than the folding times over a 
broad range of temperatures. It would be appropri- 
ate to  define the characteristic time through the typ- 
ical time for a large-scale rearrangement. However, 
it is simpler here to use the folding time itself as a 
timescale. A kinetic glass transition temperature, 
Tg,  then is defined by the criterion TAT,) is ( T , ~ ~  + 
Tmin)/2 where T A ~  is the folding time at  tempera- 
ture T .  As you can see from Table I, this transition 
is nearly self-averaging, that is, it depends very lit- 
tle on the particular sequence which is studied, and 
is roughly 1.0. 

According to the energy landscape analysis this 
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Fig. 8. Folding curves for four of the sequences used in the 
simulation. The probability of a sequence occupying the native 
structure is plotted on the vertical axis versus temperature on the 
horizontal axis. The folding temperature, T,, is defined as the tem- 
perature where Pna,(Tf) = 0.5, i.e., the probability of the occu- 
pancy of the native structure is one-half. The numbers in paren- 
theses indicate the uncertainty in the last digit. 

kinetic glass transition is most strongly influenced 
by the thermodynamic glass transition. The simula- 
tions bear out this expectation. Changing the fidu- 
cia1 cut-off time by a factor of 8 causes only a 10% 
change in the kinetic T,. Similarly, small changes to  
the algorithm for selecting the moves have a small 
effect on T,." 

The thermodynamic glass transition of the BW 
analysis depends on the entropy and roughness en- 
ergy scale of the compact states. This thermody- 
namic T ,  is also a self-averaging quantity. Using 
only the maximally compact cube states, one obtains 
Tg = 1.17. This estimate of T ,  is likely an upper 
bound, since semicompact states also contribute to 
the entropy. At the same time, kinetic constraints 
could create additional restrictions on this connec- 
tivity. These effects seem to cancel, so the kinetic 
and thermodynamic glass transitions are rather 

**Only if the number of crankshaft moves is reduced to less 
than 10% of the corner moves is there any very dramatic 
change in T,. 
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close and one can take them both to be approxi- 
mately 1 in analyzing the figures. 

Figure 9 shows a plot of the folding time, that is, 
the time it takes for a random unfolded initial con- 
dition to reach the native structure, for different 
temperatures.” Since the 27 monomer length het- 
eropolymer is so small, it is possible to  analyze fold- 
ing both above and below T ,  for quite a range of 
temperatures. Above Tf the folding process is essen- 
tially an uphill one but with a modest slope. The 
first noticeable feature about the folding data is that 
they are strongly sequence dependent at  intermedi- 
ate temperatures. In the simulations folding times 
greater than a maximum of rmaX were assigned the 
folding time T , ~ ~ .  This is the origin of the saturation 
at  the high and low temperature ends of these 
curves. At high temperature the folding is slow be- 
cause it is so strongly uphill entropically. At low 
temperatures the folding is slow because of the 
roughness of the energy landscapes for all of these 
sequences. Another characteristic feature, however, 
is that the folding time a t  intermediate tempera- 
tures is most strongly correlated with the stability of 
the folded state for each of the sequences. The fastest 
folding sequence has the highest folding tempera- 
ture, while the slowest has the lowest folding tem- 
perature. Indeed, the slowest folding sequence has a 
folding temperature less than the glass transition 
temperature. 

Also plotted in Figure 9 are two different collapse 
times for the same sequences. The lower curve is the 
time that it takes the sequence to encounter, for the 
first time, a structure with 25 contacts. The middle 
curve is the time needed by the protein to achieve any 
maximally compact 28 contact cube. The remarkable 
qualitative feature of these collapse time curves is 
that at  the moderate to high temperatures where the 
folding times vary greatly, all of the sequences have 
essentially the same collapse times. In this temper- 
ature range collapse is a self-averaging process that 
depends primarily on the average composition of the 
protein molecules. Another remarkable feature, 
however, is that the collapse time begins to  fluctuate 
greatly between different sequences at  and below the 
kinetic glass transition temperature. The energy 
landscape analysis suggests that individual transi- 
tion times between states fluctuate greatly below T,, 
and this is reflected in the collapse process. The dis- 
tribution of folding times becomes broader as you 
approach T,, reflecting the emergence of a multiex- 
ponential collapse process. We note that Flanagan et 
al. have observed sequence-dependent collapse in 
staphylococcal nuclease.lo6 This suggests the phase 
observed is near its glass transition. 

A rough quantitative understanding of these data 
for folding and collapse comes from energy land- 

ggTechnically, these times are mean-first-passage times. 
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Fig. 9. Plots of important times (in Monte Carlo steps) against 
temperature for the sequences used in our simulations. The top 
curves are the folding times T,  (the number of steps required to 
reach the native structure for the first time). The saturation at the 
wings of the curves occurs because runs were stopped at a max- 
imum time of 1.08 x 1 O9 Monte Carlos steps. The other curves 
are plots of collapse times. The middle curves are the times re- 
quired for the sequences to reach a conformation with 28 contacts 
for the first time. Similarly, the bottom curve is the time required to 
reach a conformation with 25 contacts for the first time. Notice that 
there is a much greater time spread in the folding curves than in 
the two collapse curves. 

scape analysis. The availability of both folding and 
collapse results allows us to roughly separate fea- 
tures connected with the glassy dynamics from the 
thermodynamic changes that also result from rough 
energy landscapes. The first important observation 
is that both folding and collapse times give parabolic 
Arrhenius plots, just as most experimental data do 
for the forward and reverse rate of folding.73 In the 
laboratory this curvature is usually ascribed t o  the 
thermodynamic dependence of the effective interac- 
tions, the difference of heat capacity between the 
folded and unfolded states arising from the hydro- 
phobic effect. Since the force laws in the simulation 
are taken to be independent of temperature, the tem- 
perature dependence of the hydrophobic effect is not 
at all involved in the simulation data. The simula- 
tion of Miller et al. also effectively finds a curved 
Arrhenius plot.lo7 A simple analysis can be carried 
out by assuming that the location of the folding 
bottleneck, niin, is independent of temperature. 
Roughly speaking then, the folding time will be 
given by Eq. (13) with the energy barrier Fiin given 
by the difference in free energy between the folding 
bottleneck states and the free energy of the bottom 
of the unfolded free energy minimum, i.e., the lowest 
free energy unfolded states. This involves motion on 
the free energy gradient for the reaction coordinate 
based on the number of correct contacts. At this 
level of analysis, the collapse time can be treated in 
a similar way using the total number of contacts of 
any kind as a reaction coordinate. In the tempera- 
ture range of 1.0 to 2.25 (the reason for considering 
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this temperature range will become clear below) the 
time required for collapse to configurations with 25 
contacts varies by a factor of less than 4, indicating 
that there is little, if any, free energy barrier to col- 
lapse. Therefore, collapse is essentially downhill in 
free energy and behaves like a Type OA scenario. 
The dynamic reorganization timescale will become 
longer as the protein becomes more compact because 
excluded volume has a stronger effect on dynamics 
in compact states. Therefore, in the generalized 
transition state approximation of the section on 
Quantitative Aspects of the Kinetics of a Folding 
Protein, the collapse time will be given by Eq. (9) for 
the time for a downhill process, 

where Zcollapse is the typical lifetime of an individual 
microstate in a random collapsed state. For the pur- 
poses of calculating the barrier height, Fkin, we set 
the free energy of the bottom of the unfolded free 
energy minimum equal to  the free energy of the col- 
lapsed states. Then the folding time involves the 
free energy difference of the folded and compact con- 
figurations. Another way of obtaining a folding time 
that depends on this free energy difference is to con- 
sider folding to be a three state unimolecular reac- 
tion, random coil collapsed + folded, where the 
second step, collapsed + folded is rate-limiting. The 
data are consistent with such a reaction scheme. 

We can eliminate the purely dynamic factors by 
taking the ratio of the folding to the collapse time 

t -  and assuming that t(nkin) = tcollapse. Then using Eq. 
(13) for the folding and collapse times and using Eq. 
(8) for the free energy predicts that a plot of the 
logarithm of the ratio of the folding to the collapse 
times is parabolic, 

t 

where the subscript collapse indicates that the 
quantity is evaluated in a random collapsed state. 
The log of this ratio is plotted versus 1/T in Figure 
10. We show here the data only between tempera- 
tures 1.0 and 2.25 because outside this range the 
folding times exceed the time used as a cut-off in the 
simulations. These curves can be fit very adequately 
with parabolas. The coefficients of the parabolas are 
shown in Table 11. In the fit all of the constant terms 
are positive and all of the linear (in liT) terms are 
negative, which imply the - inequalities < 
SO,collapse and E(nkin) < Ecollapse. Both of these in- 
equalities are consistent with the bottleneck for 
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Fig. 10. The logarithm of the ratio of the folding time to the 
time for collapse to 25 contacts against the inverse temperature. 
The lines are parabola fits to the data. The coefficients of these 
parabolas are shown in Table II. 

folding occurring after the collapse, in agreement 
with both intuition and the simulation data. The 
curvature reflects the value of the roughness of the 
energy landscape of the collapsed configurations. 
This analysis shows that for a rough energy land- 
scape, the heat capacity of the collapsed configura- 
tions arises from fluctuations in structure and cor- 
responding energy differences between collapsed 
configurations. The linear term in 1/T reflects pri- 
marily the enthalpic part of the activation free en- 
ergy for achieving a transition state. It should be 
strongly correlated with the stability gap. 

One can also check the theory by using indepen- 
dently derived information about the simulation 
model to  make order-of-magnitude estimates of the 
sizes of the coefficients in the parabola fits. The con- 
stant term is the difference of the configurational 
entropies of the collapsed states and the folding 
transition bottleneck states. The number of states 
with 25 contacts has been estimated to  be lo9, yield- 
ing a configurational entropy of 9 log 10 = 21. The 
configurational entropy of the folding bottleneck 
states is more difficult to estimate, but it is clearly 
less than that of the collapsed states. Therefore, the 
constant coefficient is expected to be of order 10, i.e., 
between = 3 and = 30. This expectation is very well 
confirmed by Table 11, where the constant coeffi- 
cients are seen to lie between 16 and 19. The coeffi- 
cient of the 1/T term is the difference between the 
average energy of the folding bottleneck states and 
the collapsed states. We have defined a collapsed 
state to  be a state with 25 contacts and the average 
contact energy in our model is -2, therefore, the 
average energy of a collapsed state is -50. The av- 
erage energy of a folding bottleneck state must be 
greater than the energy of the native state, which is 
-84 for sequences 002 and 004 and -80 for se- 
quences 006 and 007 (see Table I). Therefore, we 
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TABLE 11. The Coefficients of the Parabolic Fits, 
log(d~collapse) = A + BIT + C/T2, 
to the Data Shown in Figure 10* 

002 19.0 -34.9 23.8 
004 17.0 -30.1 20.1 
006 16.9 -25.2 16.1 
007 16.1 -22.2 15.0 

*The sequence numbers refer to the sequences displayed in 
Table I. The column headings also show the physical chemical 
interpretations of the coefficients given in Eq. (16) in the text. 

expect the coefficient of the 11T term to lie between 
0 and -34 for the first two sequences and to lie be- 
tween 0 and -30 for the later two sequences. Table 
I1 shows the coefficients to lie within these bounds, 
within reasonable error estimates. The coefficient of 
the 1/T2 term is one-half times the difference be- 
tween the roughnesses of the collapsed states and 
the bottleneck states. Each interaction energy in the 
model differs from the average interaction energy by 
+ 1 or - 1, so the roughness of the set of random 
collapsed states with 25 contacts is AE = 25. The 
roughness of the bottleneck states is smaller than 
this number, but difficult to estimate. Thus, we ex- 
pect the Coefficient of the 1/T2 term to be somewhat 
less than 12.5. The values for this coefficient range 
from 14 to  24, as shown in Table 11. This estimate is 
not as good as the previous ones, but it does give the 
right sign and order-of-magnitude, which is the best 
that can be expected from such an approximate the- 
ory and such simple estimates. 

A quantitative relationship between protein fold- 
ing kinetics and the thermodynamic stability of the 
native state can be obtained with linear free energy 
 relationship^.^^.^^^-^^^ I n the past these relations 
have been applied to the interpretation of data from 
site-directed mutagenesis The Y 
are also the mainstay of the analysis of many other 
biochemical  reaction^.''^-^^^ In this analysis the 
differences in the free energies of the transition 
states, folded states, and unfolded states for two dif- 
ferent sequences obey the linear relation 

The transfer coefficient a is a measure of the resem- 
blance of the transition state to the folded state. The 
value of a is easily obtained from the data. If we make 
the obvious assumption that the dynamic factors are 
approximately the same for the different sequences, 
then Eq. (17) implies that a plot of the logarithm of 
the folding rate against the logarithm of the equi- 
librium constant for folding will be a straight line 
with a slope of a.118 When we plot the logarithm of 
the folding rate versus the logarithm of the equilib- 
rium constant for different sequences, we see such a 

nice linear free energy relationship, shown in Figure 
11. At the temperature T = 1.0 the folding time 
seems nearly independent of the driving force, while 
the driving force is entirely reflected in the unfolding 
rate. Thus folding here is nearly entirely “downhill,” 
a Type 0 scenario. (The large fluctuations suggest a 
Type OB.) At T = 1.26 there is a clear nucleation 
barrier, but it is small. The transfer coefficient of a 
= 0.1 suggests a rather early transition state, i.e., a t  
this temperature the bottleneck configurations are 
collapsed but have little native structure. The fur- 
ther increase of a at higher T reflects a later tran- 
sition state as the entropy terms become more im- 
portant. This shows that the transitions are only 
weakly Type I and essentially Type 0 under these 
thermodynamic conditions. The success of this anal- 
ysis is remarkable because the native structures cor- 
responding with the sequence are not strongly re- 
lated to each other unlike the situation in site- 
directed mutagenesis experiments. 

An Arrhenius plot of the unfolding time versus 
1IT is shown in Figure 12. This curve shows the 
dynamic effects as T, is approached. There is a clear 
change in the behavior of the activation energy for 
unfolding near T, where the curve starts to level off. 
This behavior reflects the change in dynamics at  T, 
suggested by the energy landscape analysis. The 
loss of dynamic flexibility caused by the entropy cri- 
sis leads to dynamic reorganization times limited by 
the entropy of search and the activation energy of 
the elementary step [see Eq. (l l)] .  This analysis of 
the computer simulation shows many of the ways in 
which data can be reduced when the thermodynamic 
dependence of the underlying forces is understood. 

ENERGY LANDSCAPE ANALYSIS AND 
FOLDING EXPERIMENTS 

We now turn to the analysis of some particular 
proteins that have been studied extensively in the 
laboratory, lysozyme, chymotrypsin inhibitor, and 
cytochrome c. Despite the significant work already 
done on these systems, we believe that there are 
insufficient data to  uniquely classify the mecha- 
nisms of folding via our energy landscape frame- 
work. However, it is possible to  use the existing data 
to give a flavor of how these ideas can be used in 
laboratory situations. As we have seen in our dis- 
cussion of the computer simulations, many qualita- 
tive features of experiments, such as curved Arrhe- 
nius plots, can be obtained from the energy 
landscape scenario, and can even be quantified if the 
underlying driving forces are understood. A consid- 
erable difficulty in the experimental studies is that 
these driving forces are temperature dependent.13 It 
is, however, important to realize that we can sepa- 
rately change the driving force by such devices as 
the use of denaturant or mutation and separate this 
effect from those effects which are directly due to the 
ruggedness of the energy landscape due to thermal 
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Fig. 11. Plots for the linear free energy relationship analysis. 
Each plot shows the folding rate against the folding equilibrium 
constant for each of the six sequences studied here. On the hor- 
izontal axis [fl represents the probability of the native structure 
being occupied and [Ul represents the probability of a non-native 

energies. Ruggedness is a more nearly self-averag- 
ing quantity. A further analysis of this type for spe- 
cific systems will, we hope, be made soon.*** 

***At this point the reader may wish to review the folding 
scenarios discussed in Figure 5. 

J 
l o 3  lo2 10' 

10s ' - ' -  

D K=[F]/[U] 

structure being occupied. (A) A linear free energy plot for temper- 
ature T = 1 .O, that is, at about the glass transition temperature for 
these sequences. The rest of the plots (B-E) are for temperatures 
above the glass transition temperatures. 

In some ways, the simplest experimental situation 
occurs for those proteins and conditions which ex- 
hibit a Type I folding mechanism. The kinetics in 
such system should be simple exponential. These 
systems have moderate driving forces and are stud- 
ied in the near equilibrium range near the midpoint 
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Fig. 12. An Arrhenius plot of the unfolding time against the 
inverse temperature for five of the sequences. The unfolding time 
was calculated by multiplying the folding time by the ratio of the 
folded population to the unfolded population at a given tempera- 
ture. Consequently, there is the same saturation effect at low 
temperature as in Figure 9 caused by the finite simulation time. 

of the transition curve. One feature favoring a Type 
I transition as opposed to a Type I1 transition is the 
avoidance of premature collapse. When collapse oc- 
curs corresponding changes in the ruggedness of the 
energy landscape can arise and play a role. Appar- 
ently Type I behavior occurs upon the cold denatur- 
ation of lysozyme as studied by Chen and Schell- 
man.119.120 It is substantially a uniexponential 
process. 

The folding of chymotrypsin Inhibitor 2, an 83 res- 
idue monomeric protein with no disulfide bonds, has 
been studied by Jackson and Fersht.121,122 In many 
respects their experiments resemble a Type I sce- 
nario. Jackson and Fersht used fluorescence mea- 
surements and scanning microcalorimetry to  study 
the refolding of this protein. The equilibrium dena- 
turation experiments found strong evidence for a 
simple two-state transition without intermediates. 
The kinetic measurements, however, reveal three 
phases, but it is clear that these are due to the five 
proline residues in the molecule, of which at  least 
four are in the trans state in the crystal structure. 
Seventy-seven percent of the protein molecules fold 
with a time constant of 0.02 s and the two observable 
slow phases have time constants of 43 and 500 s. The 
slow phases are catalyzed by peptidyl-prolyl isomer- 
ase, which catalyzes proline isomerization. The fast 
phase is not affected by this enzyme. The protein 
molecules that start with all the prolines in the 
trans configuration have very nearly exponential ki- 
netics on the timescale studied. 

In the energy landscape view, proline isomeriza- 
tion appears as a high ridge separating the config- 
urations with a cis isomer from those with a trans 
i s ~ m e r . ~ ~ ~ ? ~ ' ~  One such ridge appears for each pro- 
line in the protein. Each of these separate parts of the 
configuration space can be analyzed with the simple 

energy landscape concepts that we have already dis- 
cussed. Thus, the mere observation of multiexponen- 
tiality is not enough to imply that these systems obey 
Type I1 kinetics in which a glass transition is present. 
These ridges in the energy landscape come from the 
simple effect of single amino acid residues, whereas 
the glass transition comes from the composite effect 
of all the amino acid residues in the protein. 

An example of apparent Type I1 behavior is pro- 
vided by hen lysozyme a t  its high temperature de- 
naturation transition. The evidence for Type I1 be- 
havior of lysozyme at  this transition is largely based 
on the CD measurements and pulsed hydrogen-ex- 
change labeling carried out by Radford et al.lZ5 
These studies suggest multiexponential behavior for 
the protection of the amide hydrogens, which Rad- 
ford et al. have interpreted as due to the existence of 
multiple parallel folding pathways. The Type I1 na- 
ture of this transition apparently occurs because of 
the possibility of early collapse. In addition, misfold- 
ing is apparently present since the CD shows, after 
the first 100 ms, considerably more a-helix present 
than is present in the native state. Thus, in this 
situation, the folding protein adopts a locally favor- 
able conformation which must be partly unfolded to 
get into the globally favored native state. The initial 
strong local tendency toward helix formation is giv- 
ing rise to frustration in the technical sense of com- 
peting interactions discussed earlier in this paper. 
The Type I1 behavior suggests that the roughness of 
the energy landscape for lysozyme is actually larger, 
compared to k,T, at the high temperatures than a t  
the low temperatures, apparently due to the temper- 
ature dependence of the hydrophobic forces. 

Cytochrome c, with its heme constraints, appar- 
ently has little roughness to its energy landscape 
compared to the free energy gradient. The heme is 
covalently bound to the protein chain and after the 
iron coordination sphere is completed, folding of dif- 
ferent parts of the protein occurs rather rapidly. On 
the other hand, the heme group can also be misli- 
gated by some of the amino acids in the protein and 
this misligation can be detected spectroscopically. 
The misligated population cannot follow the free en- 
ergy gradient all the way to the native structure so 
the presence of the heme also facilitates the study of 
the different misfolded structures present in an en- 
semble of folding proteins. Sosnick et al. have stud- 
ied the folding of cytochrome c under conditions 
where the misligation does not occur.126 They found 
that about 50-70% of the molecules in this popula- 
tion acquired native secondary and tertiary struc- 
ture with a time constant of approximately 15 ms. 
They estimated, from fluorescence quenching, the 
time constant for collapse to be approximately 12 
ms, that is, of the same order as the folding time. 
These experiments suggest that cytochrome c fold- 
ing is Type 0 under these conditions though it is 
difficult to assign it to  Type OA or Type OB with the 
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data from these experiments. Experiments on cy- 
tochrome c folding provide a good illustration of how 
the folding of a particular protein can vary qualita- 
tively as the conditions of the folding experiment 
vary. For example, when cytochrome c is refolded at  
pH 6.2, the folding is multiexponential and takes on 
the order of seconds. Sosnick et al. have also shown 
that the slow folding at  pH 6.2 is due to the forma- 
tion of misfolded, collapsed structure, rather than 
the specific misligation of the heme, in agreement 
with the picture of a glassy phase presented here. 

CONCLUSION 
The energy landscape picture allows us to com- 

bine various disparate ideas about the nature of bi- 
omolecular self-organization in protein folding. The 
energy landscape picture can accommodate multiple 
parallel path scenarios, as well as unique, sequence- 
dependent pathways for protein folding. The crucial 
concept in understanding particular experimental 
and computer simulation situations is to  organize 
the kinetics of the problem through the consider- 
ation of a phase diagram and to  study the dynamics 
of the crucial order parameters for folding which dis- 
tinguish folded states from unfolded ones. In a ge- 
neric energy landscape picture, several different 
phase transitions occur and are coupled. At the very 
minimum, one must consider the two purely ther- 
modynamic transitions of folding and of collapse. 
The collapse transition temperature depends upon 
both the overall tendency for self-association and 
also on the ruggedness of the energy landscape. 
Above the glass transition collapse is a largely self- 
averaging process; that is, it depends on the overall 
composition of the sequence and on little else. The 
folding transition, on the other hand, is always sen- 
sitive to the details of the sequence. In addition to 
these conventional, understood phases, a rough en- 
ergy landscape exhibits a glass transition which oc- 
curs near a thermodynamic glass transition temper- 
ature, Tg This temperature is also a self-averaging 
property of different sequences of similar composi- 
tion. 

Different scenarios for protein folding mecha- 
nisms occur, depending on the relationship of these 
various temperatures and the conditions under 
which the experiment is carried out. The simplest 
situation to understand occurs when there is a mod- 
erate driving force toward the folded state. Near the 
midpoint of the denaturation curve, there will be an 
overall double minimum potential of free energy 
function and the roughness of the energy landscape 
simply acts to modulate the rate of passing over the 
transition state. This transition state is actually a 
set of many configurations and could be said to con- 
sist of numerous microtransition states in a funnel 
toward the folded state. The kinetics in this situa- 
tion are simple exponential. If the driving forces for 
folding are considerably smaller, the folding temper- 

ature can become close to the glass transition tem- 
perature. In this case one encounters considerable 
slowing of the folding process itself; a Type I1 sce- 
nario emerges in which individual pathways for 
folding can be dissected. Here there will be multiple 
exponential processes typically. The great irony, of 
course, is that in the situation where we can find 
individual pathways, folding will be typically very 
slow. Indeed, nearly kinetically unfoldable proteins 
would exhibit the most clearly defined pathway for 
folding. These discrete pathways, however, are not 
self-averaging aspects of the dynamics and are sen- 
sitive to  individual mutations in sequence. 

For very large driving forces, one can encounter 
Type 0 scenario folding in which essentially all of 
the dynamics goes on in a downhill manner. If a 
Type 0 scenario can occur much above T,, this gives 
rise to  processes that are very fast (of the order of 
ordinary homopolymer collapse times). lZ7 On the 
other hand, if the glass transition intervenes, which 
is likely if nonspecific collapse occurs, individual 
pathways can still be found, and, again, they will be 
strongly sequence dependent and sensitive to muta- 
tions. 

If the qualitative nature of the interaction energy 
scales is understood, detailed temperature depen- 
dences can be obtained by the energy landscape 
analysis. A typical feature of this analysis is that 
one obtains curved Arrhenius plots for folding times, 
much like those actually occurring in experimental 
situations. This curvature reflects the roughness of 
the energy scale of the particular protein and enters 
in both a thermodynamic and dynamic way. The 
other energy scale is related to the folding temper- 
ature itself and to the stability gap in the energy 
spectrum of kinetically foldable proteins. Simple lin- 
ear free energy relations between the folding time 
and the stability gap energy scale are obtained. A 
most remarkable feature, however, is that there are 
discontinuities in these relations and in the appar- 
ent activated energies themselves as the glass tran- 
sition is approached. The main difficulty in using 
energy landscape analysis to interpret laboratory 
experiments is the temperature dependence of the 
underlying thermodynamic forces. Still, the self-av- 
eraging nature of the roughness energy scales ver- 
sus the specific sequence dependence of the stability 
gap scale should allow some insight to be obtained in 
real experiments. The employment of different 
modes of denaturation will be essential in differen- 
tiating these energy scales of the protein folding 
landscape. One can think of the use of chemical de- 
naturants, such as urea and guanidine, that largely 
bind to unfolded configurations as primarily affect- 
ing the stability gap rather than the roughness en- 
ergy scale. On the other hand, pressure will strongly 
affect all solvent-mediated forces and thus will cor- 
relate with the roughness energy s ~ a l e . ~ ' ~ - ' ~ ~  

Another complexity in laboratory experiments is 
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that there can be multiple order parameters for real 
proteins, since folded structures differ in several 
ways from the typical unfolded ones. The point is, 
however, that there are probably only a few such 
parameters and a few overall energy scales that are 
relevant. If the dynamic reorganization timescales 
for each of these order parameters are similar, the 
many reaction coordinate situation does not differ 
dramatically from the one effective coordinate pic- 
ture we have discussed in detail in this paper. If the 
timescales for different motions differ appreciably, 
either through local energy barriers or glass transi- 
tion temperatures that vary with these order param- 
eters, a more complex scenario in which the folding 
bottleneck is largely independent of the equilibrium 
free energy barrier can arise. Still the few coordi- 
nate generalization of the present analysis would be 
applicable. Experimentally this situation would re- 
semble Type I1 or Type OB one coordinate scenarios, 
in that multiexponential kinetics would be preva- 
lent. 

The most important additional order parameters 
are those measuring the degree of collapse, second- 
ary structure, e.g., helical content, and side chain 
ordering. The glass transition characteristics de- 
pend greatly on collapse, so this is one possible 
source of decoupling of the bottleneck from the equi- 
librium free energy barrier.6 The ruggedness of the 
energy landscape also can depend on side chain ori- 
entation since some misassociations may simply not 
be sterically allowed for some side chain orienta- 
tions. In addition, the configurational entropy of the 
backbone depends on its helical content, again af- 
fecting the dynamic glass transition. Certainly in 
multidomain proteins one must use different reac- 
tion coordinates for each folding unit. Even single 
domain proteins may have different folding sub- 
structures. Some analyses such as that of Bryngel- 
son and Wolynes, suggest that  the critical nucleus 
for folding is large,6 but other studies suggest 
smaller sizes for the critical nucleus and concomi- 
tantly smaller folding units with separate reaction 
 coordinate^.'^ In any case, an energy landscape 
analysis allows us to reduce, in many circumstances, 
a huge number of variables down to only a few de- 
grees of freedom and a statistical characterization of 
the roughness of the energy landscape. The true di- 
versity of the energy landscape only comes through 
in the Type I1 scenarios in which the glass transition 
has intervened. A study of most experiments sug- 
gests that many proteins are near the glass transi- 
tion and may show Type OB and Type I1 scenarios. 
Since the roughness of the energy scale is self-aver- 
aging, it will be interesting to explore the phase di- 
agrams for different proteins and especially to ex- 
amine different protein compositional classes to see 
if there are systematic differences in energy scale 
roughness in in vitro folding. 

One of the major fruits of the energy landscape 

analysis of protein folding has been a simple varia- 
tional criterion for achieving fast-folding proteins. 
The minimal frustration principle, which at first 
seemed a qualitative concept, has been formulated 
now as a criterion for the maximization of the fold- 
ing temperature compared to the glass transition 
temperature. This principle has already been used 
to reverse engineer proteins to discover correla- 
tions that are important in predicting protein struc- 
t ~ r e . ~ ~ , ~ ~  In addition, it has been used to design pro- 
teins that can fold on reasonable timescales on com- 
puter~.’~’ It will be interesting to see whether the 
combination of the reverse engineering and engi- 
neering approaches will allow the design of kineti- 
cally foldable proteins in the laboratory. 
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