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ABSTRACT Analysis of extended molecu- 
lar dynamics (MD) simulations of lysozyme in 
vacuo and in aqueous solution reveals that it is 
possible to separate the configurational space 
into two subspaces: (1) an “essential” subspace 
containing only a few degrees of freedom in 
which anharmonic motion occurs that com- 
prises most of the positional fluctuations; and 
(2) the remaining space in which the motion has 
a narrow Gaussian distribution and which can 
be considered as “physically constrained.” If 
overall translation and rotation are eliminated, 
the two spaces can be constructed by a simple 
linear transformation in Cartesian coordinate 
space, which remains valid over several hun- 
dred picoseconds. The transformation follows 
from the covariance matrix of the positional de- 
viations. The essential degrees of freedom seem 
to describe motions which are relevant for the 
function of the protein, while the physically 
constrained subspace merely describes irrele- 
vant local fluctuations. The near-constraint be- 
havior of the latter subspace allows the separa- 
tion of equations of motion and promises the 
possibility of investigating independently the 
essential space and performing dynamic simu- 
lations only in this reduced space. 
0 1993 Wiley-Liss, Inc. 
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INTRODUCTION 
Functional proteins are generally stable mechan- 

ical constructs that allow certain types of internal 
motion to enable their biological function. The in- 
ternal motions may allow the binding of a substrate 
or coenzyme, the adaptation to a different environ- 
ment as in specific aggregation, or the transmission 
of a conformational adjustment to affect the binding 
or reactivity at a remote site, as in allosteric effects. 
Such functional internal motions may be subtle and 
involve complex correlations between atomic mo- 
tions, but their nature is inherent in the structure 
and interactions within the molecule. It is a chal- 
lenge to derive such motions from the molecular 
structure and interactions, to identify their func- 
tional role, and to reduce the complex protein dy- 
namics to its essential degrees of freedom. 
0 1993 WILEY-LISS, INC. 

In this paper we investigate the correlations be- 
tween atomic positional fluctuations in a protein, as 
derived from (nanosecond) molecular dynamics 
(MD) simulations, both in vacuum and in aqueous 
environment. By diagonalizing the covariance ma- 
trix of the atomic displacements, we find that most 
of the positional fluctuations are concentrated in 
correlated motions in a subspace of only a few (not 
more than 1%) degrees of freedom, while all other 
degrees of freedom represent much less important, 
basically independent, Gaussian fluctuations or- 
thogonal to the “essential” subspace. The motion 
outside the essential subspace can be considered as 
essentially constrained. This offers the possibility of 
representing protein dynamics in the essential sub- 
space only. 

Our treatment differs from a harmonic or quasi- 
harmonic normal mode a n a l y ~ i s l - ~ , ~ ~  in two ways. 
First, we do not analyze the motion but rather the 
positional fluctuations, without involving the 
atomic masses in the analysis. Our purpose is to 
identify an “irrelevant” subspace which may be con- 
sidered essentially constrained. Second, we do not 
attempt to describe the motion in the “essential” 
subspace as harmonic, or even as mutually uncou- 
pled, because it is neither harmonic nor uncoupled 
and such a treatment would restrict the mechanics 
of a protein to the level of uninteresting vibrations. 
The projection of a MD trajectory onto normal mode 
axes as carried out by Horiuchi and GO2 bears a 
resemblance to our analysis of displacements in the 
essential subspace (be it that the spaces onto which 
the motion is projected are not the same: they con- 
sider a dihedral angle subspace defined by normal 
modes of low frequency; we retain Cartesian coordi- 
nates and define the subspace from the covariance 
matrix). They find that the motions in the lower 
modes are restricted in narrower ranges than those 
derived by the harmonic approximation; we find a 
similar restriction due to nonlinear behavior and 
the presence of nonlinear constraints within the es- 
sential subspace. 

The covariance matrix of atomic displacements 
has been used previously for quasiharmonic analy- 

Received May 25, 1993; revision accepted August 13, 1993. 
Address reprint requests to Dr. Herman J.C. Berendsen, De- 

partment of Biophysical Chemistry and BIOSON Research In- 
stitute, The University of Groningen, Nijenborgh 4, 9747 AG 
Groningen, The Netherlands. 



ESSENTIAL DYNAMICS OF PROTEINS 413 

S ~ S , ~ * *  for entropy and for an anal- 
ysis of collective motions.' We note that Ichiye and 
Karplus' construct the N x N covariance matrix, 
where N is the number of atoms in the system, of the 
vectorial inner products, while we construct the 
3N x 3N matrix of Cartesian displacements. The 
former indicates whether two particles move in the 
same or opposite directions, while the latter includes 
more complex correlations such as twist and mutu- 
ally perpendicular displacements. 

This paper introduces the theory, analyzes the dy- 
namics for one biomolecular example, and suggests 
how dynamic simulation in the essential subspace 
can be performed in general for proteins. In subse- 
quent papers we shall investigate the essential sub- 
space, the relation between essential dynamics and 
biological function in more detail for specific pro- 
teins, and perform dynamics in the essential space 
only. 

THEORY 
We consider the dynamics of a protein in equilib- 

rium in a given environment a t  a temperature T. 
Assume that a trajectory in phase space is available 
from a reliable MD simulation. We first eliminate 
the overall translational and rotational motion be- 
cause these are irrelevant for the internal motion 
we wish to analyze. The precise method of eliminat- 
ing the overall motion is not important either the 
linear and angular moments are removed every step 
in the simulation, or the molecular axes are con- 
structed each step by a least-squares translational 
and rotational fit. The result in any case is a Carte- 
sian molecular coordinate system in which the 
atomic motions can be expressed. The internal mo- 
tion is now described by a trajectory x(t), where x is 
a 3N-dimensional vector of all atomic coordinates, 
represented by a column vector. If desired, x can 
represent a subset of atoms. 

The correlation between atomic motions can be 
expressed in the covariance matrix C of the posi- 
tional deviations: 

(1) 

where ( ) denote an average over time. The symmet- 
ric matrix C can always be diagonalized by an or- 
thogonal coordinate transformation T 

(2) 

which transforms C into a diagonal matrix A = 
(qqT) of eigenvalues X i :  

C = TATT or A = TTCT. (3) 

The ith column of T is the eigenvector belonging to 
X i .  When a saicient  number of independent config- 
urations (at least 3N+ 1) are available to evaluate 
C, there will be 3N eigenvalues, of which at least 6 
representing overall translation and rotation are 
nearly zero. When a number of configurations, S, 

c = cov(x) = ((x - (x))(x - (X)IT) 

x-(x) = Tq or q = TT(x - (x)) 

less than 3N+1, is analyzed the total number of 
nonzero eigenvalues is at most S-1 since the co- 
variance matrix will not have full rank. 

The matrix C has the property of being always 
connected to the system constraints. In Appendix A 
we show that a subspace which is forbidden (or al- 
most forbidden) for the motion is always fully de- 
fined by a subset of eigenvectors of the matrix C 
with zero or nearly zero eigenvalues. It is also im- 
portant to note that the probability distribution of 
the displacements along the eigenvectors, although 
linearly uncorrelated, is not necessarily statistically 
independent. On the other hand, if a linear orthog- 
onal transformation defines a subset of statistically 
independent generalized coordinates, then the unit 
vectors corresponding to this subset will always be 
eigenvectors of the covariance matrix C. The total 
positional fluctuation &((xi - (xi))2) can be thought 
to be built up from the contributions of the eigen- 
vectors: 

X,((X, - = ((x - (XHT(X - (x))) = 
(qTTTTq) = (qTq) = Zi(q?)  = &hi. (4) 

We choose to sort X i  in order of decreasing value. 
Thus the first eigenvectors represent the largest po- 
sitional deviation, and most of the positional fluctu- 
ations reside in a limited subset of the first n eigen- 
values, where n is small compared to a total of 3N. 

We now divide the total q-space in an essential 
subspace ql ,  . . . q, and the remaining space q,+ . . . 
,qW We denote coordinates in the essential sub- 
space by 5, and coordinates in the remaining sub- 
space by s. As we shall show, the s-coordinates be- 
have effectively as constraints: they have narrow 
Gaussian distributions with zero mean and do not 
contribute significantly to the positional fluctua- 
tions. Thus they behave as harmonic oscillators with 
a large force constant. As we shall show in Appendix 
B, such degrees of freedom may be treated as full 
constraints. This means that the mechanics in the 
essential subspace can be approximated by setting 
all s = 0, the approximation becoming exact if the 
force constants of the s-coordinates tend to infinity. 

The equations of motion in the essential subspace 
can be obtained by applying the transformation T to 
the equations of motion of x: 

M'q = TT MX = -TT V,V(X) = -V,V(q). (5) 

Here M is the diagonal matrix of particle masses mi 
and M' is a transformed mass tensor 

In (5) we have used the potential gradient transfor- 
mation 

The potential V can be expressed in q, rather than 
in x, by applying the coordinate transformation. If 
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the dynamics is approximated by applying full con- 
straints to all s-coordinates (setting all s identically 
to zero), then V can be expressed in 5 only. The forces 
in s-space then vanish since the basically indepen- 
dent Gaussian distributions found for the s-coordi- 
nates imply that V can be approximated as 

V((,s) = V(&s = 0) + &hisf, i = n + 1, 3N - 6 (8) 

where ki are the force constants. This means that 
the equations of motion of the constrained system 
are entirely restricted to the essential subspace, in 
spite of the apparent mixing between spaces caused 
by the mass tensor [Eq. (5)l. For the dynamic equa- 
tions in the essential subspace only the upper left 
n x n block of M' is needed. Thus protein dynamics 
may be reduced to the essential subspace of very 
limited dimensionality. This has extremely impor- 
tant consequences for the simplification of protein 
dynamics, the consequences of which we shall pur- 
sue in a separate paper. 

METHODS 
Analysis was performed on the trajectories of two 

distinct simulations of hen egg white lysozyme. 
A simulation in vacuum was performed by the au- 

thors, using the GROMOS simulation package and 
the GROMOS force field." A starting structure was 
taken from the Brookhaven Protein Data Bank, en- 
try 3LYZ. Including polar hydrogens, the system 
contained 1258 atoms. Nonpolar hydrogens were in- 
corporated implicitly by the use of united atoms. In 
total a simulation of 1 nsec was performed, with a 
step size of 2 fsec. The temperature was kept at 298 
K by coupling to an external temperature bath: 
with a coupling constant T = 0.01 psec. Bond lengths 
were constrained using the procedure SHAKE? Ro- 
tational motion around, and translational motion of 
the center of mass was removed every 0.5 psec to 
prevent conversion of thermal motions into overall 
rotational and translational ones. Nonbonded inter- 
actions were evaluated using a short cutoff range of 
0.8 nm, within which interactions were calculated 
every time step. Interactions in the range of 0.8-1.2 
nm were updated every 20 fsec. During the simula- 
tion, configurations were saved every 0.5 psec. 

A. Mark kindly offered a 900 psec (100-1000 psec) 
trajectory of a simulation of lysozyme. This simula- 
tion, which included 5,345 water molecules, was per- 
formed at 300 K, also using the GROMOS package 
and the corresponding force field." Here, configura- 
tions were saved every 0.05 psec. For further details 
concerning this calculation we refer to Smith et al.13 

Before the covariance matrix was built, all config- 
urations were fitted to the first configuration by first 
fitting the center of mass and next perform a least 
square fit procedure" on the C, coordinates. Cova- 
riance matrices C were constructed from the posi- 

tion coordinates of the atoms (all atoms or C, atoms 
only) according to 

Where S is the total number of configurations, 
t = 1,2, . , . S, xi(t) are the position coordinates with 
i= 1,2, . . . 3N, and N is the number of atoms from 
which C is constructed and (xi) is the average of 
coordinate i over all configurations. Eigenvalues 
and their corresponding eigenvectors were calcu- 
lated using the QL algorithm.12 Diagonalization of 
the C, matrices, of size 387 by 387, required 24 sec 
of CPU time on a single processor of a CONVEX 240 
while diagonalizing the all-atom covariance matrix 
of the solvent simulation of size 3792 by 3792 re- 
quired 20.4 hr  on the same machine. 

RESULTS AND DISCUSSION 
Three different covariance matrices were diago- 

nalized. The corresponding eigenvalues are shown 
in Figure 1, plotted in descending order against the 
corresponding eigenvector indices. Figure la shows 
the eigenvalues from the matrix that was con- 
structed from (387) C, coordinates in the vacuum 
simulation. In Figure l b  we show the eigenvalues as 
obtained from the (387) C ,  coordinates from the sol- 
vent simulation. Finally, Figure l c  shows the eigen- 
values obtained by analyzing the covariance matrix 
constructed from all-atom coordinates (3792) of the 
protein from the solvent simulation. In this case the 
first few eigenvalues (average square displace- 
ments) are one order of magnitude larger than in the 
previous panels, because the number of atoms in- 
volved in these displacements is approximately 10 
times larger. Since the eigenvalues are average 
square displacements, it is clear from Figure 1 that 
the configurational space of the protein is not a ho- 
mogeneous space, in terms of the motion along the 
eigenvector directions. As can be seen from Figure 
l a  and b, the eigenvalues from the solvent simula- 
tion show a steeper decrease than those from the 
vacuum simulation. One reason for this may be the 
fact that the force fields used are not equivalent. In 
the vacuum force field, full charges have been re- 
placed by dipoles. This produces a weakening of the 
electrostatic interactions that, as we found, mainly 
affect the near constraints. As far as the methodol- 
ogy presented here is concerned there are no basic 
differences between vacuum and solvent simulation; 
so in the subsequent text we will show only the re- 
sults obtained from the solvent simulation. At the 
end of this section the vacuum and solvent results 
will be compared. 

The amount of motion associated to a subspace 
spanned by the first n eigenvectors can be defined as 
the corresponding subspace positional fluctuation 
[Eq. (4), for the summation over nj where the eigen- 
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Fig. 1. Eigenvalues, in decreasing order of magnitude, obtained from (a) C, coordinates covariance matrix 
from the vacuum simulation; (b) C, coordinates covariance matrix from the solvent simulation; (c) all atoms 
coordinates covariance matrix from the solvent simulation. 

values are ordered in descending order. In Figure 2 
we show this relative subspace positional fluctua- 
tion (with respect to the total positional fluctuation) 
versus the increasing number of eigenvectors that 
span the subspace. In Figure 2a we show the results 
as obtained from the C, matrix eigenvectors. Figure 
2b shows the results from the all-atom analysis. 
From Figure 2a it can be seen that 90% of the total 
motion is described by the first 20 eigenvectors out 
of 387. If we analyze the motion due to all atoms 
(Fig. 2b) we see that the first 35 eigenvectors out of 
3,792 contribute to 90% of the overall motion. This 
shows that most of the internal motion of the protein 
is confined within a subspace of very small dimen- 
sion. 

To have a closer look at the motion along the 
eigenvedor directions one can project the trajectory 
onto these individual eigenvectors. In Figure 3 some 
projections of the C, trajectory on the eigenvectors 
obtained fmm the C, covariance matrix are plotted 
against time. It is clear from this figure that all 
motions that have not yet reached their equilibrium 
fluctuation belong to the first 10 eigenvectors. Fig- 
ure 4 shows the sampling distribution functions for 
the displacements along the same eigenvectors, as 
well as the corresponding Gaussian functions with 
the same variance and average value. Obviously the 
only non-Gaussian distributions are again found 
within the first 10 eigenvectors. As is shown in Ap- 
pendix B, Gaussian distribution functions are ex- 
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Fig 2 (a )  Relative positional fluctuation (see text) of the motions along the eigenvectors obtained from the 
C, coordinates covariance matrix (solvent simulation) (b) Relative positional fluctuation of the motions along 
the eigenvectors obtained from the all atoms coordinates covariance matrix (solvent sirnulation) 

pected for independent and harmonic (near con- 
straint) motions that are already equilibrated. 
Figures 5 and 6 show the same, but now projections 
and distributions have been evaluated using the 
eigenvectors that  were obtained from the all atoms 
covariance matrix. Jus t  as in the case for the C, 
analysis we find that all the motions that have not 
yet reached equilibrium fluctuation are confined 
within the first 10 eigenvectors. Also the only non- 
Gaussian distributions appear within the same 
eigenvectors. 

We also noticed a great similarity between the 
motions along the first few eigenvectors of the C,, 
matrix and those along the first few eigenvectors 
derived from the all atoms matrix. To investigate 

this similarity further, we extracted the components 
from the all-atom eigenvectors that  corresponded to  
the C,, coordinates and normalized the vectors that  
we obtained in this way. In Figure 7 the projections 
of these vectors on the eigenvectors of the C,, matrix 
are plotted. I t  is clear that  the first 8 extracted vec- 
tors correspond to the first 8 C,, matrix eigenvectors. 
I t  should be mentioned that the length of these ex- 
tracted vectors is approximately 20% of the whole 
length of the corresponding all-atom eigenvector, 
whereas the number of C,, atoms is about 10% of the 
total number of atoms in the protein. This indicates 
that  the essential internal motion of the protein 
mainly involves the backbone atoms. We also noted 
that the displacements along the first 5 eigenvectors 
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Fig. 7. Absolute values of the projections of the (normalized) extracted vectors coming from the first 10 
eigenvectors of the all atoms coordinates covariance matrix (see text) on the eigenvectors obtained from the 
C, coordinates covariance matrix (solvent simulation). 

produced a large motion in the active site of the 
molecule. Figure 8 shows a superposition of 10 se- 
quential projections of the C ,  motion onto the first 
eigenvector, each separated by 100 psec (compare 
with Fig. 3). The catalytic site residues Glu-35 and 
Asp-52 are rigid, but the entrance to the active site 
cleft, including residues involved in substrate bind- 
ing (59, 62, 63, 101, 107),16 shows extensive flexi- 
bility. This motion, which also involves other loops 
in the protein, possibly affects the association and 
dissociation of substrates and products. 

Figure 9 shows the trajectory projected on four 
planes, each defined by two all atoms matrix eigen- 
vectors. In the planes of Figure 9a and b (respec- 
tively, eigenvectors 1 and 2 and eigenvectors 2 and 

3) the trajectories are confined within narrower 
ranges than those expected from independent mo- 
tions, suggesting the presence of a coupled force 
field. In Figure 9c and d (respectively, eigenvectors 1 
and 50 and eigenvectors 20 and 50) the trajectories 
fill the expected ranges almost completely. This 
means that we are dealing with basically indepen- 
dent motions. We analyzed the vacuum simulation 
and compared the motion in the essential space with 
that of the solvent simulation. The motion in the 
vacuum simulation appears to be largely restricted 
to the carboxy terminal strand; the motion near the 
active site is no longer present. Therefore pure vac- 
uum simulations appear not to be suitable for the 
study of biologically relevant motions. 
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QUANTA Release 3.3 

Fig. 8. Superposition of 10 configurations obtained by projecting the C, motion onto the first eigenvector. 
Configurations are separated by 100 psec. Residues involved in the catalytic reaction (35 and 52) and in the 
binding of the substrate (59, 62, 63, 101, and 107) are indicated. 

CONCLUSION 
The analysis given in this article shows that the 

essential dynamics of lysozyme, and presumably of 
other globular proteins, can be described in a sub- 
space of very small dimension (less than 1% of the 
original Cartesian space) consisting of linear combi- 
nations of Cartesian degrees of freedom defined in a 
molecule-fixed coordinate system. All other degrees 
of freedom can be considered as corresponding to ir- 
relevant Gaussian fluctuations, behaving like near- 
constraints. The essential subspace itself is defined 
by the near-constraints, which are related to the me- 
chanical structure of the molecule in a given confor- 
mation. We have strong evidence from inspection of 
the motion in the essential subspace of a few pro- 
teins studied up to now (lysozyme, thermolysin, and 
a subtilisin analog) that these motions are related to 
the functional behavior of the proteins such as open- 
ing and closing of the active site and hinge-bending 
motions between two domains enclosing the active 
site. The analysis of this behavior will be the subject 
of a subsequent study. A (major) conformation 

change to a different folded conformation may alter 
the characteristics of the essential subspace, while 
unfolding will lead to an increase of its dimension- 
ality. If the unimportant fluctuations are replaced 
by full constraints, the motion in the essential sub- 
space can be fully described by equations of motion 
within this subspace, thus reducing the complexity 
of protein dynamics considerably. The description in 
terms of the essential subspace also allows the eval- 
uation of thermodynamic properties: (1) the eigen- 
values of the near-constraints can be used to evalu- 
ate the entropy contribution of the near constraint 
degrees of freedom. (2) The potential energy within 
the essential subspace (which can be obtained by 
sampling) could be used for deriving the essential 
properties of the protein. 
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APPENDIX A 
In this Appendix we show that every exact or ap- 

proximate holonomic constraint is associated with iitegration of ‘the ca&si& equations of motion of a sys- 
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an exactly or approximately zero eigenvalue of the 
covariance matrix. 

If we have P holonomic near-constraints in our 
system we may express them using an implicit form 
for the relation between Cartesian coordinates: 

IG,(x)J I E i= 1,2, . . . P (All 

with E 2 0. If these constraints can be linearized 
around the average position of x, we can replace the 
previous inequality by 

~G,((X)) + VG, - (x-(x))~ 5 E. (A21 

Where VG, is taken at  (x). Since 

IGi((x>)l 5 E (A31 

we must have 

IVG,. (x-(x))~ 5 2 ~ .  (A41 

If we multiply the covariance matrix at the right 
side by VG, we obtain 

CVGi = ((x - (x))(x - (x))')VGi 
= ((x - (x))(x - (x))'VGi) 
= ((x - (x))[VGi-(x - (x))]). (A51 

Because we have near constraints E tends to zero, 
hence 

lim CVGi = lim ((x - (x))[VGi (x - (x))]) 
E-0 &--to 

= ((x-(x)) 0)  
= 0. (A61 

From (A6) it follows that every linear combination 
of gradients VG, tends to be an eigenvector with an 
almost zero eigenvalue of C. Thus every time we 
have in a system P (linear) almost constraints as 
defined by (A2), then we will always obtain P corre- 
sponding eigenvectors with almost zero eigenvalues 
from C. 

APPENDIX B 
In this Appendix we show why it is possible to 

separate the motions in 5 and s subspaces. 
The configurational probability density in the 

Cartesian coordinates of the particles of the system 
is given by 

- PV(X) e 
P(X) = (B1) J e-  PV(ddx 

with f3 = l /kT, and V(x) is the potential energy ex- 
pressed as a function of the particles coordinates. If 
we express x as 

x = Tq (B2) 

where T is the orthogonal transformation that diag- 
onalizes the covariance matrix C and 

q = (5;s); (=ti, i =  1,2, . . . n (B3) 

then the configurational probability 
q-space is 

density in 

(B4) 

This follows from the fact that the Jacobian of an 
orthogonal transformation equals 1 or -1. Now we 
expand V(q) = V(S;s) around s = 0 to second order: 

We first shall investigate when the experimental 
distributions are compatible with (B5). If we com- 
bine Eqs. (B3),(B4), and (B5) we obtain 

,-PV(S;O),-BAV(S;s) 
036) 

p(S;s) = se- PV(<;O)dg ,-PAV(S;s)ds s 
where 

If we obtain from a simulation for the 3N-6-n 
(there are 3N-6 degrees of freedom in the molecular 
axes system) near-constraints 

p(s) = IIi ( U ~ I T I J , ~ ) ' ~  e-s?nuT a? = hi (B8) 

then this means that the displacements distribution 
of each si is given by an independent Gaussian. Us- 
ing (B6) we may express p(s) as 

, - BV(S;O), - BAV(S;s)de 

Je- PV(S;O)de e- BAV(S;s)& 
. (B9) s p(s) =J p(S;s)dS = 

The independent Gaussians in Eq. (B8) are obtained 
only if 

- PAV(S;s) ~ - , - Z&%? (B10) 
hence 

This means that the potential energy can be approx- 
imated by 

i=n+l,. . .3N-6. (€312) 
It should be noted that Eq. (B12) is not only valid 
when (aVlas,)=o but it will always be valid when 
kTIh, ---* 00. In this limit we have si += 0 and then 
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(dV/dsi)si + 0. Using Eqs. (B6) and (B12) we may 
express the probability density in &s-space as 

p(~;s) = p ( 0  ni ( I / z ~ x ~ ) ’ ~  e-s?nx~ (B13) 
with 

Equation (B14) shows that the equilibrium density 
in the essential subspace is approximated by a Boltz- 
mann distribution determined by the potential en- 
ergy on the &hyperplane where all s-coordinates are 
constrained to zero. 

We shall now show that in the limit where A,, with 
i = n + 1, . . . 3N-6, tends to zero, Eq. (B14) also im- 
plies that the dynamics in the S-hyperplace can be 
described independently from any other coordinates. 
We call 6, with i= 1, . . . ,n the unit vectors corre- 
sponding to the hyperplane 5 coordinates and 1, with 
i = 1, . . . , (3N-6-n) the unit vectors corresponding 
to the near-constraints coordinates s. It is always 
possible to  define a new set of unit vectors, with 
j =  1, . . .3N-6-n, linearly independent from the [, 
unit vectors, such that15 

i$:M$’ = &iTMEr = 0 (I3151 
where M is the diagonal mass tensor. Then choosing 
as a basis set {[&} we can express x and q in the 
coordinates corresponding to this basis set and we 
call this representation q’, hence 

~ ( t )  = e,q’(t) (B16) 
q(t) = 0,q’(t). (B17) 

Where 0, and 8, are the corresponding transforma- 
tion matrices which are in general not orthogonal. 
We denote coordinates qi corresponding to 4 by 5: 
and qJ corresponding to 1’ by sJ, so that q’=(E;‘;s’). 
Since x and q are represented in orthogonal basis 
sets we must have 

~ , ( t )  = XI($, . &&:(t) + XJiJ . %&(t) (B18) 
Sl(t) = XI (it * &,:(t) + XJSJ . &)sJ(t) (BW 

s1(t) = Zi(& . S&(t) + XJ1; . 1,)~Jt) (B20) 

where i = l , .  . . ,n, a n d j = l ,  . . .3N-6-n, andI1 is  
the unit vector corresponding to xl in the physical 
Cartesian space x. Because by definition ti . & = tji2 
and ti . 1, = 0, Eqs. (B19) and (B20) reduce to 

&(t) = ‘;(t) + q1; * E,)s,r(t) (B21) 

q( t )  = XJ8; . 1,)qt). (B22) 

Combining Eqs. (BE), (B211, and (B22) we obtain 

where K~ are force constants. Using Eq. (B16) in the 
equations of motion expressed in x: 

ra’ = -v,,v(q’) (B24) 

with 

r = O:MO1. (B25) 

From Eq. (B15) it follows that r is a block-diagonal 
matrix such that 

-vg‘ V(S‘;s’) (B26) 
-v,. V(5’;s’) . 1 P‘o g’ [Opj [4 = [ 

Where re is an n x n matrix and rs’ is a 
(3N-6-n) x (3N-6-n) matrix with 

, . .  rb = S:Mtj ij = 1, .  . .n (B27a) 

rS: V = $’.TMg! E J  ij = 1 , .  . -3N-6 (B27b) 

From Eq. (B23) we have 

-O,,V(S’;s‘) = -O,*V(~’;O). (B28) 

Combining equations (B26) and (B28) we finally ob- 
tain 

re,{ = -v,.v(si;o). (B29) 

Eq. (B29) implies that the motion in the &subspace 
can be approximately described independently from 
the s’-coordinates, the approximation becoming ex- 
act as each kTlA, -+ m, with i = n + 1, . . .3N-6. 




